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1. General information 

Background and structure 

Transient receptor potential vanilloid receptor 1 

(TRPV1) is one of 6 members of the subfamily of 

vanilloid receptors that belongs to the family of 

transient receptor potential (TRP) channels.  TRP 

channels are an intrinsic part of the mammalian 

sensory system responding to a broad range of 

stimuli such as temperature, touch, pain, 

osmolarity, pheromones, and taste (8). TRPV1, 

TRPV2, TRPV3 and TRPV4 are all involved in 

thermoactivation. These channels share a similar 

structure with 6 putative transmembrane domains, 

a loop structure between transmembrane regions 

5 and 6 believed to be involved in pore formation, 

ankyrin repeats, and both the N- and C-termini 

located in the cytoplasm (8, 41).   

TRPV1 plays an important role in nociception and 

was the first of the TRPV family channels to be 

cloned. TRPV1 was cloned using capsaicin, the 

pungent component of hot chili pepper, by 

screening an expression cDNA library of dorsal 

root ganglia (5). TRPV1 is a non-selective cation 

channel and can be activated by numerus stimuli 

such as vanilloids (capsaicin, resiniferatoxin), low 

pH, elevated temperature (10), endogenous 

lipoxygenases (leukotriene B4, 12- or 15-HPETE) 

(24), endogenous anandamide (40) and ethanol 

(43). In addition, ethanol can potentiate the effects 

of capsaicin, protons and heat.  TRPV1 is broadly 

distributed.  It is highly expressed in dorsal root 

ganglia, trigeminal ganglia, in small sensory C 

fibers and some Aδ fibers.  It is also detectable in 

brain, spinal cord, bladder, kidney, liver, spleen, 

testis, lung and bowel (17).  

The cation selective channel is probably made of 

a tetrameric quaternary structure (25). Modulation 

of the activity of TRPV1 is under the control of 

many intracellular signals that act on the N-

terminal and C-terminal portions of the monomer 

including phosphorylation. Binding of pro-

inflammatory agents such as prostaglandins to its 

receptor induces a cascade of events that lead to 

activation of cAMP-dependent protein kinase that 

in turn can phosphorylate TRPV1.  Histamine can 

also activate TRPV1 through phosphorylation by 

protein kinase C (PKC).  Activation of TRPV1 

contributes to the release of substance P and 

CGRP from peripheral terminal of neurons (25).   
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Figure 1. Model structure of TRPV1. TRPV1 consists of a cytoplasmic N-terminal region that contains 3 ankyrin 

domains (green), 6 transmembrane spanning segments (blue cylinders), an intracellular pore forming (P- loop) 

loop between S5 and S6 and a cytoplasmic C-terminus region that includes a calmodulin and 

phosphatydylinositol-4,5-biphosphate binding site (red).  Colored circles represent amino-acids known to be 

important in binding the following: H
+
 (low pH) (E600, E646), purple; vanilloids (Y511,S512,L547,T550), yellow; 

protein-kinases (S116,T370,S502,T704,S800), gray. 

Function 

TRPV1 is activated by a number of agonists (see 

Table 1) although clear identification of 

endogenous ligands has been elusive.  Increased 

temperature is a well-established pathological 

activator of TRPV1 under certain conditions. Local 

acidification can activate TRPV1 and cause pain 

and inflammation. There is accumulating evidence 

for endogenous chemical mediators such as 

anandamide or leukotrienes in TRPV1 activation. 

Intracellular Ca2+ is involved in the mechanism of 

sensitization of TRPV1. Increased intracellular 

Ca2+ results in activation of phospholypase C 

(PLC) (35) which hydrolyses the membrane lipid 

phosphatidylinositol 4,5-bisphosphate (PIP2) into 

1,4,5-trisphosphate (IP3) and diacylglycerol. In an 

opposing effect, depletion of PIP2 is responsible 

for desentization of TRPV1 (35). 

Three alternatively spliced TRPV1 mRNAs have 

been characterized: VR.5’sv (38), TRPV1var (42) 

and TRPV1β (48). The TRPV1var variant 

expressed in the kidney encodes the first 248 

amino-acids and comprises only one ankyrin 

domain (42). Another variant called VR.5’sv, 

expressed in DRG, brain and peripheral blood 

mononuclear cells is missing most of the N-

terminal region and two ankyrin domains (38).  

Finally, the third alternatively spliced TRPV1 

variant known as TRPV1β lacks amino-acids 399 

to 408 (before the first transmembrane domain).  

Interestingly, all these variants can modulate the 

activity of the canonical TRPV1 protein as 

demonstrated by coexpression studies of  TRPV1 

with the variants (38, 42, 48). 

The role of TRPV1 in pain sensation has been 

clearly demonstrated by the advent of TRPV1 

knockout mice (4).  Knockout mice exhibited 

impaired thermal sensitivity to pain triggered by 

heat or capsaicin. 

TRPV1 has been implicated in neurogenic 

inflammation using pharmacological agonists and 

antagonists in animal models and by genetic 

approaches comparing severity of insults in wild 

type or TRPV1-/- (KO) mice. Neurogenic 

inflammation is characterized by edema, 

hyperalgesia, vasodilatation and inflammatory cell 

infiltration caused by nociceptor overstimulation at 

the site of injury.  The role of TRPV1 in a variety 
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of inflammatory diseases affecting multiple organs 

has been an active area of investigation. 

In some models, activation of TRPV1 plays a 

central role in the inflammatory response.  TRPV1 

is expressed in C-fibers innervating the 

respiratory tract as well as in lung epithelial cells 

and has been implicated in bronchoconstriction, 

mucus secretion, cough, and airway irritation.  

TRPV1 appears to mediate inflammatory tracheal 

hyperreactivity to carbachol in sensitized mice (3) 

and cough after RTX and ethanol treatment (15) 

which either directly activate or lower the 

activation threshold for TRPV1.  

TRPV1 is also involved in acute and chronic 

inflammation in a model of knee joint injury (26).   

However, low dose of the TRPV1 agonist RTX 

produced an analgesic effect and less edema in a 

knee joint inflammation model (29) possibly 

through receptor desensitization.  TRPV1 is also 

present in the bladder and and is involved acute 

bladder inflammation (7).  In addition, TRPV1 

promotes inflammation in colitis in both rats (27) 

and mice (28).    

Under certain circumstances, TRPV1 activation 

may confer protection against inflammation.  

Activation of TRPV1 by agonists (RTX or 

SA13353) reduced the severity of 

ishemia/reperfusion-induced renal injury in rats 

(45) and the severity of LPS-induced rheumatoid 

arthritis in mice (32). Similar observations were 

made in a murine model of experimental 

autoimmune encephalomyelitis (EAE). SA13353 

or capsaicin inhibited the production of  TNF-α 

and IL-1β (44). TRPV1 also had a protective 

effect against the onset of sepsis after endotoxin 

treatment (LPS) (9) and in rat model of sepsis by 

cecal ligation and puncture (12).  As a member of 

the acid sensing system, TRPV1 participates in 

the homeostasis of gastric acid secretion through 

activation of the sensory nerves and release of 

CGRP (18-20). 

Thus depending upon the cellular environment, 

TRPV1 may reduce the severity of inflammatory 

insults or accentuates its effects.

 

Table 1. List of indirect activators/sensitizers of TRPV1 and endogenous activators/inhibitors of TRPV1
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2. TRPV1 and the exocrine pancreas 

Pancreatitis 

Acute pancreatitis is associated with vasodilation, 

edema, neutrophil infiltration and acinar cell 

necrosis. Many of these features are 

manifestations of neurogenic inflammation and 

there is accumulating evidence that neural factors 

contribute to the pathogenesis of the disease (30). 

Using the TRPV1 agonist capsaicin to denervate 

neonatal rats, Nathan and al. demonstrated that 

TRPV1 mediated the neurogenic aspect of acute 

pancreatitis (34). Antagonists such as 

capsazepine (23) or desensitization of pancreatic 

primary sensory neurons with RTX (36) 

ameliorated the severity of caerulein-induced 

pancreatitis.   

TRPV1 activation of primary sensory nerves 

causes the release of substance P during the 

inflammatory insult (33). Substance P is a 11 

amino-acids peptide that stimulates plasma 

extravasation (14) and genetic deletion of its 

receptor (NK1-R) ameliorates caerulein induced 

acute pancreatitis (16). In the search for the 

endogenous ligands for TRPV1, Hwang and co-

workers (24) demonstrated that products from 

lipoxygenases such as 12-S-HPETE, 15-S-

HPETE and LTB4 could directly activate TRPV1 

(24). Administration of LTB4 through the celiac 

artery produced pancreatitis-like inflammation 

(47). Moreover, blockade of TRPV1 with the 

TRPV1 antagonist capsazepine or inhibition of the 

5-lipoxygenase- activating protein (FLAG) by 

preteatment with MK886 reduced the severity of 

the pancreatitis induced by LTB4 indicating that 

LTB4 was an endogenous ligand of TRPV1 and 

played a role in inducing acute pancreatitis (47). 

TRPV1 and pain sensation during 

pancreatitis  

Through retrograde labeling of pancreatic nerves 

and immunostaining with anti-TRPV1 antibody it 

has been possible to localize the pancreatic 

afferents expressing TRPV1 (13). Dorsal root 

ganglia (T9-T12) had the highest concentration of 

neurons expressing TRPV1 (65% of the neurons). 

Some TRPV1 expressing afferents were also 

detected in the nodose ganglia where 35% of the 

neurons expressed TRPV1 (13). 

TRPV1 mediates pain in acute pancreatitis. Rats 

subjected to L-arginine-induced pancreatitis 

exhibited a 2.5 fold increase of c-fos expression in 

spinal neurons suggesting activation of 

nociceptive pathways and a 3 fold increase in 

spontaneous abdominal contractions (an indicator 

of nociceptive sensation). Administration of the 

TRPV1 antagonist capsazepine reduced both c-

fos expression and abdominal contractions (49).   

TRPV1 activity is potentiated by protease-

activated receptor 2 (PAR-2) activation (11, 22). 

Both TRPV1 and PAR-2 are expressed in the 

same subset of primary afferent neurons (21). In 

HEK293 cells co-expressing both TRPV1 and 

PAR-2, it was demonstrated that PAR-2 could 

potentiate the activity of TRPV1. Further, it has 

been demonstrated that PAR-2 activation by the 

selective agonist SL-NH2 could cause thermal 

hyperalgesia and mechanical allodynia at a dose 

that does not produce inflammation (46). Direct 

infusion of trypsin or PAR-2 agonist in the 

pancreatic duct of rats induced a nociceptive 

response as demonstrated by measurement of an 

electromyographic recording from the 

acromiotrapezius (21).  

TRPV1 mediates hyperalgesia in a TNBS-induced 

chronic pancreatitis model in the rat (50).  A 

decrease in the response frequency in the Von 

Frey filament (VFF) test was observed after 

administration of the TRPV1 antagonist SB-

366791 to rats exhibiting chronic pancreatitis after 

treatment with TNBS.  Interestingly, the level of 

TRPV1 expression and the number of DRG 

neurons expressing TRPV1 were increased in 

these rats.  TRPV1’s effect on hyperalgesia in the 

TNBS-induced model is mediated by nerve 

growth factor (NGF) (51).  Anti-NGF treatment to 

rats with chronic pancreatitis reduced their 

response to the VFF test.  In addition, TRPV1 

expression in DRG neurons was also reduced 
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when rats with chronic pancreatitis were 

subjected to anti-NGF treatment. 

Recently, Schwartz and co-authors (39) 

demonstrated a synergistic effect of TRPV1 and 

TRPA1 on both pancreatic pain and inflammation 

in caerulein-induced acute pancreatitis using 

specific antagonists for TRPV1 and TRPA1.  

These findings are in agreement with the 

observation that the cannabinoid agonist, WIN 

55,212-2, known to activate TRPA1, attenuated 

capsaicin-evoked responses (2).  Alternatively, 

TRPV1 can also modulate the TRPA1 response 

to nociceptive stimuli as exemplified by TRPV1’s 

prevention of mustard oil-induced TRPA1 

internalization (1).  The interactions between 

TRPV1 and TRPA1 also have been demonstrated 

in electrophysiological responses in CHO cells co-

expressing TRPV1/TRPA1 and in trigeminal 

sensory neurons.   Both cell types exhibited  

characteristics suggesting that TRPV1 modulates 

TRPA1 responses (37).  

Finally, TRPV4, another channel of the TRP 

family that can be activated by changes in 

osmotic pressure (31), is also present in 

pancreatic sensory nerves and also contributes to 

nociceptive sensation in caerulein-induced acute 

pancreatitis (6). 

In summary, TRPV1 expressed in primary 

sensory neurons is involved in neurogenic 

inflammation of the pancreas and in nociceptive 

sensation. 

3. Tools available for the study of 

TRPV1 

a. TRPV1 Antibodies 

A large number of anti-TRPV1 antibodies are 

available commercially. Most are polyclonal 

antisera raised in rabbit, goat or even guinea pig, 

but some monoclonal antibodies are available.  

Antibodies have been used to identify TRPV1 in 

rat, human, mouse, chicken and/or zebrafish.  

Below, are listed some available antisera.  

Polyclonal antisera 

- Gp 14100 (Neuromics, Edina, CA).  Used in 

immunohistochemistry (Baiou et al., J Comp 

Neurol. 2007; 503:334-337). 

- Ab63083 (Abcam, Cambridge, MA). Used in 

immunohistochemistry (Nie et al., Am J Obstet 

Gynecol 2010; 202: 346. E1-8). 

- ACC-030 (Alomone, Jerusalem, Israel).  Used 

in immunohistochemistry, immunoelectron 

microscopy and western blot (Tominaga et al., 

Neuron 1998; 21: 531-543). 

Affinity purified polyclonal antisera  

- P-19 antibody (Santa Cruz Biotechnology, CA; 

catalog number: sc-12498).  Used in Western 

blots (Vos et al., J Neurochem 2006; 99: 

1088-102). Used in immunoprecipitation 

assay (Stanchev et al., Pain 2009; 143: 26-

36). 

- N-15 and C-15 antibodies (Santa Cruz 

Biotechnology, CA; catalog number sc-12500 

and sc-12503 respectively).  Used in Western 

blot and immunohistofluorescence (Faussone-

Pellegrini et al., (Histochem Cell Biol. 2005; 

124: 61-68). 

- AB 5370 (EMD-Millipore Calbiochem, Billerica, 

MA). Used for Western blot, 

immunohistochemistry and immunoelectron 

microscopy: Tóth et al., (Brain Res Mol Brain 

Res. 2005; 135: 162-168). 

- PC-420 (EMD-Millipore Calbiochem, Billerica, 

MA).  Used in immunohistochemistry (Zhong 

et al., Dig Dis Sic. 2008; 53: 194-203). 

Monoclonal antibodies 

- Y7101-ig (Abcam, Cambridge, MA). Used in 

immunochemistry (Peng et al., Am J Physiol 

Renal Physiol. 2008; 295: F1324-1335). 

- H00007442-M01 (Novus Biologicals, Littleton, 

CO). Used in Western blot (El Karim et al., 

Pain 2011; 152: 2211-2223). 

 

b. cDNA clones 

There are three commercial suppliers of TRPV1 

cDNA constructs: Genecopoeia (Rockville, MD); 
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OriGene (Rockville, MD) and DNASU plasmid 

Repository (ASU-Biodesign Institute, Arizona 

State University, Arizona). These 3 companies 

offer human and mouse clones. Rat cDNAs are 

only offered by Genecopoeia and OriGene 

 

c. Genetically modified mice 

Mice with genetic deletion of TRPV1 are available 

from Jackson Laboratories (catalog number 

B6.129S4-Trpv1tm1Jul/J).  

 

d. Agonists and antagonists 
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