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1. General Information 

The discovery of Src family of non-receptor 

tyrosine kinases dates back  a century ago (1911) 

when Peyton Rous noted tumors transmissible in 

chicken via cell free extracts (37). This eventually 

culminated in the discovery of the Rous Sarcoma 

virus gene product which was subsequently 

shown to cause tyrosine phosphorylation of 

proteins (15). V-Src i.e. the viral protein was thus 

the first described proto-oncogene, and c-Src is 

its normal cellular homologue in animals (41).  Src 

family members play key roles in cell morphology, 

endocytosis, motility, proliferation and survival. 

There are 11 members in the family (Blk, Brk, Fgr, 

Frk, Fyn, Hck, Lck, Lyn, c-Src, Srm, and Yes) of 

which some are expressed in pancreatic acinar 

cells. 

Structure and Regulation 

The Src family kinases are about 60 KD in size 

and human c-Src has 536 amino acids, with the 3 

additional amino acids inserted at the N terminus 

compared to chicken Src (533  amino acids). Src 

has a myristolyation sequence at the N terminus 

followed by 4 SH (Src homology) domains. The 

first one of which, i.e. the SH4 unique domain is 

80 amino acids followed by a SH3 (81-145), a 

SH2 (151-248), a protein kinase (SH1) domain 

(273-523) and a C terminus sequence with 

intervening linker regions (Figure 1). The two 

established sites of regulation of are tyrosine 527 

(Y527) located 6 amino acids from the C-terminus 

and Tyrosine 416 (Y416). 
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Figure 1: Diagram showing Domain structure of Src. The numbers indicate amino acids numbered starting 
from the N terminus. The wavy line preceding the SH4 domain is the 14 carbon myristolyation sequence. The 
proline rich domain (PRD) is indicated by the left handed helix connecting the SH2 and SH1 domains. The 
tyrosine phopshorylation sites are indicated by a red line with the hexagon. 

The SH1 kinase domain of Src is bilobed and has 

an ATP binding region at the amino portion and a 

protein substrate binding area on the carboxy 

portion. The carboxy portion contains the 

activation loop with tyrosine 416, the 

phopshorylation of which stabilizes the active 

conformation. The functions of each domain are 

shown in table 1. For more detail the reader is 

referred to more extensive, excellent reviews on 

the structure and regulation of Src (4, 35, 36, 47). 

 

Table 1: Table showing functions of the various domains of Src. 

2. Pancreatic Information 

Localization and Binding 

Src normally shows a membraneous location in 

acinar cells, with apical enrichment under normal 

conditions and is associated with cortactin (39) 

(Figure 2). Activation of Src by supraphysiologic 

caerulein changes the staining pattern of Src and 

Yes to a cytosolic one along with its dissociation 

from cortactin (39). This activation also increases 

the binding of Src to RhoA (26) and the P85 

subunit of PI3 kinases (25). 
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Figure 2: Src and Cortactin normally co-localize apically in acinar cells and localize differentially with 
supraphysiologic stimulation: Immunostaining of Src (A-C) and Cortactin (D-F) in acinar cells under 
control conditions (A, D) shows both to localize apically (Arrows). Treatment 10nM caerulein for 30 minutes 
(B, E). results in a diffuse cytosolic appearance of Src (B) while cortactin localizes on the basal surface 
(arrowheads, E). The Src inhibitor PP2 prevents these caerulein induced changes, retaining both on the apical 
surface (C, F).  Modified from Mol Biol Cell. 2008 May;19(5):2339-47.  

Activation 

Numerous studies (2, 13, 19, 22, 30, 31, 33, 34) 

have shown that diverse stimuli activate Src in 

pancreatic acinar cells. Yes and Lyn are both 

know to be activated by supraphysiologic doses of 

CCK (22, 30, 39). However Lyn is also shown to 

be activated by physiologic doses of CCK, EGF, 

and phorbol ester (30). Activation occurs rapidly in 

response to caerulein, with maximal 

phosphorylation of Y416 detected within 1-2 

minutes (30, 39). Some studies suggest that Src 

activation may be calcium dependent (52). 

Src family members have been hypothesized to 

play several roles in acinar cells including the 

regulation of store mediated calcium entry (34) by 

c-Src, changes in actin localization by Yes (19, 

22), secretion by Src and Yes (22, 25), activation 

of PKC-delta by Lyn (45), upregulation of 

chemokine production in response to substance P 

via the neurokinin-1 receptor (33), endocytosis 

(13, 31), and acinar cell blebbing via Yes 

mediated phosphorylation of cortactin (39). 

Pharmacologic inhibition of Src results in a 

reduction in the severity of caerulein induced 

pancreatitis in both rats (39) and mice (33). Acinar 

phenomena in which the role of Src has been 

studied in detail are discussed below. 

Calcium Homeostasis 

Redondo et al showed that depletion of the 

intracellular calcium stores with thapsigargin 

induces Src activation (34). This is dependent on 

http://www.ncbi.nlm.nih.gov/pubmed?term=singh%20%20mcniven
http://www.ncbi.nlm.nih.gov/pubmed?term=singh%20%20mcniven
http://www.ncbi.nlm.nih.gov/pubmed?term=singh%20%20mcniven


 

4 

the integrity of the actin cytoskeleton, since it was 

prevented by cytochalasin D, which prevents actin 

polymerization. Conversely the Src inhibitor PP1 

dose dependently reduced store mediated 

calcium entry (34). Tsunoda et al using a kinase 

assay showed that substrate phosphorylation was 

reduced in extracts from acini incubated in the 

presence of the extracellular calcium chelator 

EGTA (51). The exact mechanism by which Src is 

regulated by calcium or vice versa remains to be 

explored. 

Actin Localization and Blebbing 

Pancreatic acinar cells normally have filamentous 

actin (F-actin) enriched in the subapical area (27, 

28, 39, 40). This reorganizes, with an increase on 

the basolateral surface, when acinar cells are 

stimulated with supraphysiologic doses of 

caerulein (1, 39, 40, 48, 49). Acinar blebbing 

induced by supraphysiologic caerulein is 

dependent on the actin cytoskeleton (48). The Src 

family member Yes has been thought to play a 

role in basolateral reorganization of F-actin (22, 

39). Lutz et al showed that the Src inhibitor PP1 

partially prevented actin changes (22). We have 

shown Src dependent tyrosine phosphorylation of 

the protein cortactin which regulates the 

branching of actin (39). Preventing cortactin 

phosphorylation, by pharmacologic inhibition of 

Src using PP2 or SU6656, or transfection of acini 

with a mutant cortactin which cannot be tyrosine 

phosphorylated by Src reduced baso-lateral 

reorganization of actin induced by 

supraphysiologic caerulein. Additionally, the 

pathological blebbing that is induced by 

supraphysiologic caerulein was also prevented by 

the mutant cortactin and pharmacologic inhibition 

of Src. 

Pancreatic Cancer 

Studies in pancreatic cancer have shown Src to 

be involved in tumorigenesis, cell proliferation, 

invasion, and motility. C-Src and oncogenic RAS 

have been shown to co-operatively initiate and 

accelerate pancreatic cancer (38). Aberrant acinar 

cell expression of the CCK2 receptor under the 

elastase promoter was associated with Src 

activation, formation of preneoplastic lesions and 

pancreatic tumor development (11). Src 

dependent activation of phosphatidyl inositol-3 

kinase and p38 MAPK have been shown to be 

involved in expression of receptors for vascular 

endothelial growth factors (VEGF) and the 

angiogenic potential of pancreatic cancer (43).  

Endocytosis, vesicular transport through the Golgi 

in pancreatic cancer cells is known to be 

regulated via phosphorylation of the large 

GTPase dynamin-2 (55)  and its associated actin-

binding protein, cortactin (5). Phosphorylation of 

Dynamin-2 at tyrosines 231, 579 by Src has also 

been shown to be involved in the metastatic 

migration and invasion of pancreatic tumor cells 

lines (10). 

Pharmacologic inhibition of Src has been shown 

to inhibit progression and metastasis in orthotopic 

(50) and transgenic (23) models of pancreatic 

cancer. The Src inhibitor Dasatinib (BMS-354825) 

resulted in decreased phosphorylation of 

extracellular signal-regulated kinase (ERK), and 

mitogen-activated protein kinase (MAPK), focal 

adhesion kinase (FAK), paxillin, AKT, signal 

transducers and activators of transcription 3 

(STAT3), as well as decreased cyclin D1 

expression. This prevented anchorage-

independent growth, proliferation, migration, 

invasion, cell cycle progression while stimulating  

apoptosis (24). 

3. Tools for studying Src in acinar 

cells 

a. Antibodies 

Src family: (SC-18, Santa Cruz biotechnology) 

Polyclonal antibody, use 1:500 for WB. 

Phospho-Src (Tyr416): (catalog # 2101, Cell 

Signal), Rabbit polyclonal antibody raised against 

a phosphopeptide; use 1:1000 for WB. 
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b. Inhibitors 

Pharmacologic inhibition of Src has is 

indispensable in determining Src’s function in 

various acinar biologic processes. This remains 

the main approach for phenomena such as 

trypsinogen activation that significantly diminish in 

cultured acinar cells or are not replicated by 

exocrine cell lines such as AR42J cells. 

The Src inhibitors used include the pyrazolo-

pyrimidine compound PP1 (16) (4-Amino-5-(4-

methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-

pyrimidine), and the related PP2 (4-amino-5-(4-

chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]-

pyrimidine) which act as competitive inhibitors of 

ATP binding. However PP1 has been shown to 

inhibit PDGF-β receptor (53) directly along with 

inhibiting Ret (6), c-Kit and Bcr-Abl (46). SU6656 

(2-oxo-3-(4,5,6,7-tetrahydro-1H-indol-2-

ylmethylene)-2,3-dihydro-1H-indole-5-sulfonic 

acid dimethylamide), was synthesized as a more 

specific inhibitor of Src (3). The IC50 of all these 

agents for various Src family members (except 

PP1 which has an IC50 of 6nM for Lyn) ranges 

from 20-280nM (29). Dasatinib (BMS-354825; N-

(2-Chloro-6-methylphenyl)-2-[[6-[4-(2-

hydroxyethyl)-1-piperazinyl)]-2-methyl-4-

pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide) 

inhibits both the Src family kinases and Bcr-Abl 

with an IC50 of < 1nM (8).  Despite the other 

targets PP1, PP2, and Dasatinib when used at 

appropriate concentrations for short term studies 

remain invaluable, since c-Abl is not normally 

expressed as a protein in acinar cells 

(unpublished data). However caution may need to 

be exercised in studies pertaining to PDGF since 

PDGFR-β is expressed in acinar cells and the 

levels of both PDGFR-β and its ligand are 

increased in chronic disease (9). Further relevant 

details of inhibitors are available in excellent 

reviews (7, 29, 44). 

 

c. Activation 

The commonly used methods for studying Src 

activation are: 

1. Immuno-precipitation and western blotting for 

active Src (PY416). 

2. Src kinase activity assays. 

Src Kinase assays have been used previously in 

acinar cells (22, 51). These are quantitative, and 

can be done on both cell lysates and immuno 

precipitated Src family members. Various 

substrates (e.g. PKS2-biotin substrate, p34cdc2 [6-

20]) have been used by different groups (22, 51).  

We (39) and others (30) have used the widely 

published method of determining the amount of 

active Src. This is described elsewhere. 

d. Mouse Lines 

While pharmacologic inhibition of Src has proven 

to be beneficial in rat caerulein pancreatitis (39), 

the role of individual Src family members in 

pancreatitis remains to be determined. While 

there are redundancies in their functions, triple 

knock outs of Src, Yes and Fyn are embryonically 

lethal (18). Studies of mice genetically deficient in 

individual Src family members suggest their role 

in several of the mechanisms relevant to 

pancreatitis. For example c-Src-/- mice have 

reduced vascular permeability which minimizes 

the damage resulting from ischemia reperfusion 

injury (32) such as in stroke or myocardial 

infarction (54). Lyn -/- mice have defects in 

immunoglobulin-mediated signaling, suggesting 

that it has a role in establishing B cell tolerance 

(17). While genetic knock outs of Fyn display 

defects in T cell signaling (42), dual knock outs for 

Hck, Fgr display defects in innate immunity as 

evidenced by (20, 21) defective neutrophil 

adhesion and migration and macrophages from 

triple knock outs of Hck, Fgr and Lyn display 

defects in Fcgamma receptor-mediated 

phagocytosis (12). 

4. Summary 

While some Src family members such as Yes 

have been implicated in specific functions of 

acinar cells including actin dynamics, and the role 

of Src in pancreatic carcinogenesis, growth and 
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invasion is being explored; the roles other Src 

family members may play in acinar cell physiology 

or diseases such as pancreatic cancer, acute 

pancreatitis remains to be determined.
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