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1. General Information 

Rab proteins constitute the largest family of Ras-

related small G proteins and play a role in 

regulating the specificity of membrane trafficking 

(63, 78).  Because of its potential importance in 

acinar cell digestive enzyme secretion Rab3 is an 

important subject for review.  Rab3 was originally 

identified in brain and shown to be localized to 

synaptic vesicles (24).  Because of its localization 

and homology to the yeast protein Sec4, it was 

believed to play a role in the terminal steps of 

secretion.  Subsequent molecular cloning 

revealed four members of the Rab3 family termed 

3A (the form originally found in brain), 3B, 3C, and 

3D.  These four forms show 75-80% amino acid 

identity with the amino and carboxyl terminal 

regions being most distinct.  All four forms are 

present in brain, but most other tissues contain 

one or two forms. Rab3B and 3 D have been 

found in exocrine, endocrine, epithelial and 

adipose cells (60).  A single form of Rab3 exists in 

C. elegans and is believed to play a role in 

neurotransmitter release (47), while in sea urchin 

eggs a Rab3 is believed to play a role in cortical 

granule exocytosis (13).  Rab3 isoforms have 

been identified in different tissues and cell types 

where it has been suggested to play a role in 

secretion (Table 1). Note that in some cases 

Rab3 inhibits and in others it stimulates secretion. 

Structurally, Rab3 species contain conserved 

functional domains similar to other Rabs.  These 

include four regions participating in guanine 

nucleotide binding, and effector region 

corresponding to the effector region in Ras, and a 

CXC prenylation motif at the C-terminal (45).  The 

latter is used for the addition of two 

geranylgeranyl groups to the cysteine residues 

which attach the Rab3 to membranes (35).  The 

crystal structure of Rab3A in the active 

configuration or bound to Rabphillin has been 

determined (19, 50) and Rab3D has been fit to 

the same model with 6 β-strands and 5 α-helices 

(45). The structure of the Rabs changes upon 

binding GTP and mutant Rab3 species have been 

described similar to Ras that are locked into 

active and inactive configurations (6).   Rab3A 

and 3D mouse genes possess 5 exons and 

Rab3D has been localized to chromosome 13 

(1,5). 

Similar to other small G proteins, the guanine 

binding state of Rab3 proteins is regulated by 

guanine nucleotide exchange proteins or factors 

(GEPs or GEFs) and GTPase activating proteins 

http://www.ncbi.nlm.nih.gov/gene/5864
http://www.ncbi.nlm.nih.gov/gene/5865
http://www.ncbi.nlm.nih.gov/gene/115827
http://www.ncbi.nlm.nih.gov/gene/9545
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(GAPs).  To date, two Rab3 GEFs have been 

identified.  Rab3 GEP was purified from brain and 

acted on Rab3A, 3C and 3D (72).  Although it did 

not regulate Rab 2, Rab 5, Rab 10 or Rab 11, a 

recent study indicates it can act on Rab 27A and 

27B (23).  Rab3 GEP is identical to the human 

DENN/MADD protein and contains a death 

domain which can bind the TNFR1 (15).  Rab3 

GEP knockout mice die at birth and embryonic 

synaptic transmitter release is impaired (64).  The 

second Rab3 GEF, known as GRAB, interacts 

with inositol hexakisphosphate kinase and Rab3A 

and its protein expression is primarily in brain 

(41).  There are no known GEFs specific for 

individual Rab3 isoforms such as Rab3D.  There 

is one known Rab3 GAP which acts on all four 

Rab3 isoforms and is broadly distributed in 

different tissues (26).  It is now known to have two 

subunits including a p130 catalytic subunit.  

Mutations in p130 cause Warburg Micro 

syndrome in humans and deletion in mice affects 

transmitter release and neuroplasticity (59).  

There is no known specific Rab3 GDI, but rather a 

common family of Rab GDI isoforms which bind 

prenylated Rabs in the cytoplasm and participates 

in insertion and removal from membranes (75).  

Likewise, Rab Escort Protein plays a role in the 

recycling of many or all Rab proteins (2).   Rab3A 

activity is also specifically regulated by calcium-

calmodulin complex (15). 

Considerable attention has been paid to 

understanding how Rab3A regulates secretion 

from neurons and neuroendocrine cells.  Gene 

deletion of Rab3A had only subtle 

electrophysiological effects on transmitter release 
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and long term potentiation (7, 28).  Because of the 

presence of multiple forms of Rab3 in neuronal 

cells, the group of T. Sudhof prepared a mouse 

model in which all four isoforms of Rab3 were 

deleted.  Although these mice died shortly after 

birth from respiratory failure (61), their cultured 

hippocampal neurons showed normal synaptic 

structure, but reduced transmitter release.  This 

defect could be rescued by a single allele of 

Rab3A.  In a study of chromaffin cells from the 

same compound knockout mice, the number of 

large dense core granules was reduced and the 

number of morphologically docked granules was 

normal, but the releasable pool was reduced 

indicating an altered function in priming (62).  In a 

study of C. elegans which has a single Rab3 

species, deletion reduced the number of synaptic 

vesicles at the neuromuscular junction and the 

amount of transmitter released (47).  Another role 

of Rab3 mediated by its effector Rim is to localize 

secretion to sites of calcium channels in the 

presynaptic membrane (27).  Overall these 

studies in neuronal cells indicate Rab3 is involved 

in vesicle formation and transmitter release.  

Rab3 has also been reported as a presynaptic 

target for ethanol sensitivity (4). 

Little is known as to how Rab3 exerts its actions.  

Earlier work focused on the effects of Rab3 

effector domain peptides, but these effects were 

probably the result of peptide insertion into 

membranes and may not reflect the activity of the 

intact Rab3 molecule.  Current work focuses on 

the identification of specific Rab effector 

molecules and how they affect secretion at the 

molecular level. These possible effectors include 

syaptotagmin like proteins (Slp1-5), Slp proteins 

lacking C2 domains (Slac2), rabphillin, Rim, and 

Noc2 (25).  These proteins contain a Rab-binding 

domain (RBD) which is sometimes referred to as 

a Slp homology domain.  These proteins interact 

with Rab3 and Rab 27 isoforms and participate in 

the docking of secretory granules to the plasma 

membrane.

 

2. Rab3 and the Exocrine Pancreas 

Small G proteins are known to be key regulators 

of pancreatic digestive enzyme secretion and 

Rab3 was one of the first to be studied (74).  The 

primary form of Rab3 present in pancreatic acinar 

cells and on pancreatic ZG is Rab3D based on 

RT-PCR, Western blotting and mass spectrometry 

(11, 48, 69).  Rab3D is also present in other 

exocrine glands with large secretory granules 

including parotid and other salivary glands, 

lacrimal acinar and gastric chief cells (12, 

22,46,48,54,65).  Immunohistochemistry localizes 

Rab3d to the ZG region of acinar cells with no 

obvious localization to ducts.  High resolution 

confocal microscopy, immunogold electron 

microscopy, and mass spectrometry localized 

Rab3D to the outer surface of the ZG membrane 

where it is attached by isoprenyl groups 

(10,48,69).  Over 90 % of Rab3D in mouse acini 

is particulate and most of this partitions into Triton 

X-114, indicating a hydrophobic component, in 

this case isoprenylation (9,69).  Both 

immunohistochemistry of intact pancreas or acini 

and staining of granules after isolation indicates 

that essentially all ZG bear Rab3D as shown for 

rat and mouse pancreas in Figs 1 and 2.  

Following stimulation of secretion in rat pancreatic 

lobules, Rab3 (isoform unknown) was shown to 

redistribute from ZG to Golgi by EM 

immunohistochemistry (33).  In contrast to rat and 

mouse pancreatic acinar cells, the AR42J cell line 

expresses all four forms of Rab3 and these show 

different density distributions (36,53).  

Subsequently, Rab3D in AR42J cells was shown 

to localize to ZG when dexamethasone was used 

to induce an acinar phenotype (39).  Islet beta 

cells and beta cell derived cell lines also express 

all four forms of Rab3 (31,56). 

Developmental changes in acinar cell Rab3D 

have also been studied.  Rab3D was first 

detectable in the embryonic rat pancreas at day 
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18, on day 20-21 was primarily cytosolic, with 

redistribution to a membrane fraction after birth 

(68).  For reference, ZG appear between  

 

Figure 1. Immunoflourescence localization of Rab 3D in rat pancreas.  A. Low power view (bar = 40 µm).   B. 
High power shows outline of individual zymogen granules as indicated by arrowheads (bar = 10 µm) Reproduced 
from Reference (48). 
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Figure 2.  Mouse Pancreas triple labeled with anti Rab3D (Red), Phalloidin to stain filamentous actin 
(Green), and Dapi to stain nuclei (Blue).  Arrowheads indicate individual ZG coated with Rab3D. 

embryonic day 16-17 and regulated secretion 

becomes prominent shortly after birth.  Rab3D 

also undergoes developmentally regulated 

carboxymethylation that decreases at the time 

when secretion begins (67).  The same study 

showed that dexamethasone induced maturation 

of AR42J cells was accompanied by an increase 

in the unmethylated Rab3D protein. 

As discussed in Section 1, most studies point to a 

role for Rab3 in regulating secretion and possibly 

exocytosis.  The secretory granule localization of 

Rab3D also suggests a role in the secretory 

process.  Early work showed putative effector 

domain peptides from Rab3A stimulated secretion 

from permeabilized acini and that this action 

synergized with GTPγS suggesting an effect on a 

terminal step in secretion (51).  A similar effect 

was reported when ZGs were mixed with plasma 

membrane in vitro (20).  Subsequent work 

however has focused on the intact structure and 

configuration of the G protein.  A transgenic 

mouse study reported enhanced regulated 

amylase secretion from pancreatic acini of mice 

overexpressing epitope tagged Rab3D which was 

targeted to the zymogen granule (49).  Because 

small G proteins can be locked into distinct 

guanine nucleotide bound configurations, X. Chen 

et al carried out studies using adenoviral vectors 

to overexpress mutant Rab3D forms in mouse 

acini (8).  Overexpression of a dominant negative 

mutants Rab3D T36N or Rab3D N135I inhibited 

amylase secretion without affecting intracellular 

Ca2+ signaling while the constitutively active 

mutant Rab3D Q81L had no effect.  Furthermore, 

the dominant negative mutants did not localize to 

the ZG, but rather in the basolateral region and 

upon cell fractionation to the cytosol.  This 

combined with the fact that essentially 100% of 

Rab3D in acini under basal conditions is already 

in the GTP bound state, and that the dominant 

negative mutants reduced this to 25-35% as 

determined by a GST-Rim pull down assay, 

suggested that the mutants blocked GDP/GTP 

exchange (9).  Thus the dominant negative 

Rab3D species could have been binding to a GEF 

acting on the related Rab protein, Rab 27B, 

raising questions of specificity that could better be 

answered by siRNA knockdown.  However, such 
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techniques are difficult on primary cells.  In 

contrast to acini, only about 20% of Rab3A in islet 

beta cell is in the GTP bound active configuration, 

but can be increased by overexpressing Rab3 

GEP (15). 

A Rab3D knockout mouse has also been 

described (57).  These mice did not have an 

obvious abnormal secretory function and both 

pancreas and parotid glands responded 

appropriately to secretagogues.  However, the 

size of the secretory granules were increased and 

granule volume was calculated to be doubled.  

The authors concluded that rather than regulating 

secretion, Rab3D regulated granule formation.  

Mast cell granule exocytosis was also unaffected.  

Other evidence supporting a role for Rab3D in 

Golgi function and granule biogenesis is the 

finding of Rab3d on cis Golgi of goblet cells and 

Brunners gland acinar cells of the intestine (71). 

Another possible explanation  of the findings in 

the Rab3D knockout mouse is that another Rab, 

such as Rab27B, was redundant with Rab3D and 

adapted to replace it.  It will be interesting to see 

the result of a double Rab3D/Rab27B knockout. 

Several putative effectors have been identified for 

mammalian pancreas Rab3 isoforms (25).  

Possible effectors for Rab3D include Noc2 (No C2 

domain) and Slp1; Rabphillin and Slp-

4/granulophillin are potential effectors for Rab3A 

in islet beta cells, but have not been reported to 

be present in acinar cells.  GST-Noc2 interacts 

with GTP-liganded Rab3 and Noc2 knockout mice 

show acinar cells filled with zymogen granules, 

but with reduced amylase secretion; the mice also 

showed reduced insulin secretion (43).  Antibody 

to Noc2 blocks secretion in permeabilized parotid 

acinar cells (32).  However Noc2 may be 

mediating the effect of Rab27 rather than Rab3.  

Slp 1 can interact with Rab3D and also with 

Myosin 5 isoforms and may thereby regulate 

motility of granules; however, other Rabs also can 

play this role (18).  Valentjin, Valentjin et al (70) 

suggested that Rab3D is involved in actin 

polymerization around exocytosing granules, but 

whether this is related to myosin is unknown.  In 

islet beta cells, Rim2 interacting with Rab3A is 

required for granule docking and priming (77) 

while Slp-4 also known as granulophillin binds 

Rab3A and Munc-18 a SNARE protein regulator 

(14). Future work is necessary to establish the 

targets of Rab3D in pancreatic acinar cells.  

3. Tools for study of Rab3 

a. Antibodies 

A number of antibodies are available including 

ones that react with all Rab3 isoforms and ones 

specific for individual species.  To study Rab3D in 

pancreatic acini for Western blotting and 

immunofluorescence in frozen sections we have 

use a rabbit polyclona antisera prepared by Mark 

McNiven (Mayo Medical School) against a mouse 

peptide sequence from the c terminus of Rab3D 

(48).  A similarly prepared antibody is available 

from Fitzgerald Industries (2OR-1343).  Other 

antipeptide antibodies are available against the 

amino terminal sequence.  A rabbit antibody 

against recombinant Rab3D has been prepared 

and used by Robert Raffaniello (39). 

b. Plasmid and Viral Vectors 

Plasmids coding for human Rab3A, 3B, and 3D 

with a 3xHA amino terminal epitope tag in 

pcDNA3.1 are available from Missouri Science & 

Technology cDNA Resource center 

(www.cdna.org).  Adenoviral vectors coding for 

WT Rab3D and Q81L, N135I, and T36N mutants 

have been prepared by us and described (8).  

c. Mouse Models 

Knockout mice with Rab3D deleted on a 

C57BL6/J background have been prepared and 

described (57). 

 

file://maize.umhsnas.med.umich.edu/Physiology/williams-files/Pancreapedia/Molecule%20Pages/Rab3/www.cdna.org
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