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1. General Information 

PKC isoforms and activators 

The protein kinase C (PKC) family of 

serine/threonine kinases, is composed of 10 

isoforms which are divided into three classes: 

conventional (α, ß1, ßII, γ), novel (δ, ε, , ) and 

atypical ( , ) (FIGURE 1). Other isoforms, PKC 

 and , have since been reclassified as a distinct 

family called protein kinase D (PKD). All PKC 

isoforms share a conserved kinase domain; 

however, they have differences in their regulatory 

sites. The regulatory domains are defined by a 

pseudosubstrate (autoinhibitory) region and one 

or two membrane-targeting modules (C1 and C2 

domains). Conventional PKC (cPKC) are 

activated by diacylglycerol (DAG) and calcium, 

which binds to C1 and C2, respectively (39, 78). 

The novel PKCs (nPKC) are activated by DAG 

and the atypical PKCs (aPKC) are activated by 

mechanisms involving phosphoinositides and 

phosphorylation (42). In addition, DAG-sensitive 

PKC isoforms can be activated pharmacologically 

using phorbol esters (Table 1) (47, 55).  

Maturation  

Binding of heat shock protein-90 (HSP-90) and 

the mammalian target of rapamycin complex 2 

(mTORC2) are important for the phosphorylation-

dependent maturation of nascent PKC, 

particularly cPKC and nPKC, (FIGURE 2A, B). 

PKC isoforms share three phosphorylation sites 

located in the kinase domain and in the carboxy-

terminal tail.  These phosphorylation sites are in 

the activation loop, and the turn and hydrophobic 

motifs, which are important for attaining catalytic 

competence and stability. The activation loop is 

phosphorylated by the upstream kinase 

phosphoinositide-dependent kinase-1 (PDK-1), 

either constitutively for nPKC and cPKC or by an 

agonist for aPKC (FIGURE 2A). However, unlike 

other isoforms, PKCδ does not require activation 

loop phosphorylation to attain catalytic 

competence. Phosphorylation of the turn motif 

depends on mTORC2 but it is unknown if 

mTORC2 is directly or indirectly involved 

(FIGURE 2B). The mechanism of phosphorylation 

for the hydrophobic motif is unclear in intact cells, 

however, kinetic analyses indicates that the 
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hydrophobic motif is autophosphorylated by an 

intramolecular reaction. Phosphorylation of these 

sites is also important for attaining maximal 

enzyme activities (39). 

Figure 1. PKC Family. Domain composition of PKC isoforms: pseudosubstrate (green rectangle), C1 domain 
[orange rectangle; C1B domain binds diacylglycerol (DAG)], C2 domain [yellow rectangle; Ca

2+
 binding], hinge 

segment, kinase domain (light blue) and carboxyl-terminal tail (CT; dark blue rectangle). 

Translocation and activation 

PKC activation requires two distinct events: 

association of PKC with activators and exposure 

of the catalytic regions of the enzyme required to 

phosphorylate its substrates. PKC is held in the 

inactive state by the binding of an internal 

pseudosubstrate region to its substrate-binding 

site (FIGURE 3A). PKC activation is usually 

initiated by translocation of the enzyme to its 

target site where it becomes tightly associated 

with membranes (FIGURE 3B) (39). Experiments 

have shown that PKC translocation is not inhibited 

by depolymerization of filamentous actin or 

tubulin, suggesting that neither cytoskeletal 

protein is involved in PKC translocation. Further, 

photobleaching experiments have shown that 

PKC freely diffuses in the cytosol (57). Lipid 

hydrolysis is involved in the recruitment of PKC 

isoforms to membranes by Ca2+ and/or DAG.  

Binding of Ca2+ to cPKC’s C2 domain pre-targets 

the enzyme to the plasma membrane where it 

binds phosphatidylinositol-4,5-bisphosphate 

(PIP2), phosphatidyl serine (PS) and DAG, thus 

promoting dissociation of the pseudosubstrate 

from the substrate-recognition domain (FIGURE 

3B). This exposes PKC’s ATP-binding site and 

kinase domain, and allows binding of the target 

protein (substrate) and its subsequent 

phosphorylation (FIGURE 3C, D). For nPKC, 

recruitment to the plasma membrane involves 

DAG.  The C1 domain of nPKC has an intrinsic 

high-affinity for DAG that appears sufficient to 
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target it to membranes upon agonist-stimulated 

increases in DAG. The nPKCs also have a high 

basal localization to membranes enriched in DAG 

such as the Golgi (39).  However, atypical 

isoforms do not bind DAG or Ca2+, rather 

phosphotidylinositol-3,4,5-triphosphate (PIP3) and 

other lipids appear to mediate its translocation 

and activation. Though it remains unclear how 

PIP3 activates aPKC, two mechanisms have been 

proposed for activation of the aPKC ξ isoform: 

directly by binding of PIP3 to the PKC ξ pleckstrin 

homology (PH) domain or an indirect effect 

mediated by a PIP3/PDK complex (40). Other 

studies indicate that aPKC is allosterically 

activated by an interaction of its Phox/Bem1 

(PB1) domain with a partitioning defective 6 

(PAR6)-CDC42 complex (54). 

 

Figure 2. PKC maturation. Nascent PKC is found in an inactive open conformation associated with membrane 
fractions. PKC must first undergo maturation through a series of phosphorylations to attain catalytic competence. 
HSP90 binds in the kinase domain while PDK-1 binds in the carboxy-terminus and phosphorylates the activation 
loop (red circle; 2A). Following activation loop phosphorylation, mTORC2 is involved in phosphorylations of the 
turn motif (blue circle) and the hydrophobic motif (orange circle). The fully mature enzyme is localized to the 
cytosol with the pseudosubstrate blocking the substrate-binding pocket (2B). 

Membrane localization  

The tight association of PKCs with membranes 

appears to be mediated by their binding to 

membrane lipids and as well to specific 

membrane proteins known as, the “receptors for 

activated C kinase” or RACKs (39, 52). This 

family of membrane proteins binds active, 

phosphorylated PKC. Since RACKS are localized 

to specific subcellular compartments, they are an 

important mechanism for targeting PKC(14). 

RACKs are also believed to bring PKC into close 

proximity with its substrate, thereby allowing 

functional specificity for different isoforms. PKC 

binding to RACKs is isoform specific and occurs 

after the first step in PKC activation. Isoform 
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specific inhibitors have been developed through 

an understanding of the PKC interaction with 

RACKs. These isoform specific translocation 

inhibitors, which have been developed for PKCδ 

and -ε, are peptides that correspond to the RACK-

binding site of PKC (14). Peptides, known as 

pseudo-RACK peptides, have also been identified 

which induce binding of PKC to its RACK in the 

absence of second messenger activation (53). 

These pseudo-RACKs stabilize PKC for binding 

with RACK and act as activators in vitro (53, 58). 

Other scaffold proteins have also been shown to 

bind PKC in its various conformations (“non-

phosphorylated”, “inactive but phosphorylated”, 

“active and dephosphorylated”) and are critical for 

the regulation and function of PKC(39).    

 

Figure 3. Model of conventional PKC Activation. In the inactive state (A), the PKC isozyme is in a “closed” 
conformation with the pseudosubstrate blocking the substrate binding region. Following agonist stimulated lipid 
hydrolysis, PKC is activated through a series of sequential activation steps: PKC binds Ca

2+
 (A) and translocates 

to membranes where binding of DAG occurs and promotes the activation and opening of the isozyme (B). The 
activated isozyme can now bind ATP and phosphorylate various substrates (C, D). Phosphorylations: activation 
loop (red circle), turn motif (blue circle), hydrophobic motif (orange circle).

This section has summarized the mechanisms of 

PKC maturation, translocation and activation. The 

next section will focus on issues that are specific 

to PKC’s role in pancreatic function. 

2. PKC in the Pancreas 

PKC has been shown to be involved in regulation 

of pancreatic exocrine and endocrine secretion. 

Methods such as immunohistochemistry and 

immunoblot analysis have enabled the 

identification of PKC isoforms in cells of the 

rodent endocrine and exocrine pancreas (Table 2, 

below).   

The following sections (2a-d) focus predominantly 

on PKC in acini, although PKC distribution and 

function in other pancreatic cell types including 

ductal, islet and stellate cells are discussed in 

section 2e. 
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a.  PKC  in the acinar cell 

Cellular distribution 

PKC isoforms α, δ, ε and ξ have been identified in 

rat pancreatic acini by immunoblot (47, 55). These 

isoforms were localized to the cytosol; addition of 

a phorbol ester, 12-O-tetradecanoylphorbol-13-

acetate (TPA) causes translocation of these PKCs 

to membranes (4, 47). It should be noted that the 

results of studies of PKC isoform distribution in 

the exocrine pancreas have been inconsistent. 

For example, one study detected PKCε and -ξ in 

apical acini  by immunofluorescence (IF) but not 

PKCα or -δ (4). Similarly, another investigation 

using IF did not find strong immunoreactivy for 

PKCα or -δ in pancreatic acini (28). Some of the 

differences among PKC studies may be due to 

the effectiveness of antisera used for immunoblot 

versus immunofluorescence. Translocation to 

membranes was observed for PKC isoforms α, δ, 

and ε, but not ξ in acini treated with physiological 

concentrations of the hormone, cholecystokinin 

(CCK-8; 100pM)(35). However, in another study, 

this CCK-8 stimulation resulted in translocation of 

PKCδ and -ε only (47). 

b.  PKC and acinar cell secretion 

PKC exhibits complex effects on acinar cell 

secretion. Several studies support a role for PKC 

in the intracellular control of acinar cell secretion. 

Secretagogues, such as cerulein, can stimulate 

calcium-independent amylase release through a 

PKC-dependent pathway (9). Phorbol esters such 

as 12-O-tetradecanoylphorbol-13-acetate (TPA) 

and synthetic diacylglycerol are known to 

stimulate modest amylase release alone and to 

enhance Ca2+ stimulated amylase release (8, 36, 

60, 79). In permeabilized acini, phorbol esters 

(PMA, TPA) have been shown to enhance Ca2+ 

stimulated (29, 30, 44) as well as cAMP-

dependent amylase release (29). However, 

prolonged pretreatment of acini with phorbol ester 

down regulates PKC activity and reduces CCK 

and carbachol stimulated amylase secretion (65). 

More recently, PKC inhibitors, such as 

bisindoylmalemide and its derivatives (i.e. 

GF109203X), have been shown to partially inhibit 

CCK and carbachol-induced amylase secretion 

(35). Various methods have also been used to 

study the effects of PKC isoforms on stimulated 

amylase release with physiological concentrations 

of CCK (35). In one study using pharmacologic 

inhibitors of PKC (GF109203X and rottlerin), 

CCK-induced (300pM) amylase release was 

reduced by ~30% or more. The study also found 

that Gö6976, a specific inhibitor of classical PKC 

(i.e. PKCα), did not inhibit amylase release (35) 

Thus, the reduction in amylase release was 

attributed to inhibition of PKCδ by rottlerin (35). 

Rottlerin, once thought to be a specific inhibitor of 

PKC has since been found to inhibit other PKC 

isoforms and other protein kinases (16, 33, 66, 

68, 82). Adenoviral mediated over-expression of 

PKC isoforms demonstrated that over expression 
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of PKCδ and -ε, but not -α, enhanced amylase 

release (35). In another study, using an isoform-

specific PKCδ translocation inhibitor as well as 

PKCδ -/- mice, it was shown that there was no 

effect on stimulated amylase release over a range 

of CCK concentrations (0.001-100nM). Similarly, 

there was no difference in stimulated amylase 

release using carbachol (0.01-100 uM) as 

compared to wild-type (PKCδ +/+) (71). Thus, the 

reduction in amylase secretion previously 

attributed to inhibition of PKCδ 

may have been the result of inhibition of another 

PKC isoform (α, ε, ζ) or other protein kinases. 

c.  PKC and acute pancreatitis 

Acute pancreatitis is the result of numerous 

pathological events within the exocrine pancreas 

(pancreatic acinar cells), including inhibition of 

apical secretion, basolateral secretion, retention 

and premature activation of proteases, and 

elaboration of inflammatory mediators. Several 

PKC isoforms, including the conventional PKCα, 

novel PKCδ and -ε and atypical PKCξ have been 

shown to mediate some of these pancreatitis 

responses (13, 55, 56). 

PKC activity and cellular distribution 

under pathological conditions 

Stimulation of pancreatic acinar cells with 

supraphysiologic concentrations of CCK (10-

100nM) have been shown to stimulate a rapid (2 

min) rise in PKCδ and -ε activity and cause their 

translocation to membranes (47, 55). 

Furthermore, supraphysiologic CCK activated the 

PKCξ isoform, but did not initiate its translocation, 

while PKCα was neither activated nor 

translocated. In a separate study, however, 

supraphysiologic CCK caused PKCα activation 

and translocation (13). Additional studies have 

shown that ethanol alone can activate PKCε, 

while a combination of physiological CCK and 

ethanol activates PKCδ, -ε and -α, similar to 

supraphysiological CCK alone (56). Thus the 

sensitizing effects of ethanol may be mediated 

through the selective recruitment of specific PKC 

isoforms. 

Figure 4. PKCε Translocation. In vivo, supraphysiological cerulein stimulates PKCε redistribution from an apical 
region to a supranuclear region of the acinar cell (apical region, arrowhead and circle; supranuclear region, 

arrow). PKCε  (red); Nuclei are DAPI stained (blue).
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In pancreatic acinar cells, PKCα, -δ and -ε have a 

mainly apical, vesicular distribution (51). With 

ethanol and physiologic CCK treatment, PKCε 

translocates to perinuclear regions and the 

plasma membrane (56). This redistribution pattern 

was also seen in cells treated with the PKCε 

translocation activator. However, a different 

redistribution pattern was seen for PKCδ. While 

ethanol alone did not stimulate translocation, a 

combination of ethanol and physiological CCK did 

(56).  PKC translocation has also been observed 

with supraphysiologic concentrations of cerulein 

(100nM). PKCε has been shown to translocate 

from an apical distribution to a supranuclear 

region upon supraphysiologic cerulein stimulation 

(FIGURE 4). It has also been shown to co-localize 

with GRAMP-92, an endosomal/lysosomal 

marker, in an area (supranuclear) where 

premature activation of digestive zymogens is 

believed to occur (70).  

Figure 5. Broad-spectrum PKC inhibitor GF-109203X reduces cerulein-induced (100nM) zymogen 
activation. The contribution of PKCδ in secretagogue-induced zymogen activation was verified in a later study 
using a genetic approach. Acini isolated from PKCδ -/- mice treated with a supraphysiologic concentration (100 
nM) of the hormone cholecystokinin (CCK) showed much less zymogen activation than that seen in acini from 
wild type mice. Furthermore, other pancreatitis responses, including NF-κB activation, were also reduced by 
PKCδ deletion (70). 

Basolateral Secretion 

In CCK-induced acute pancreatitis, decreased 

secretion into the pancreatic duct has been 

observed. Prior studies have indicated that a 

redirection of secretion from the apical membrane 

to the basolateral membrane may be a factor (18, 

59). Ethanol (20mM) has been shown to inhibit 

physiological CCK-induced amylase secretion by 

blocking apical exocytosis with subsequent 

redirection of exocytosis to the basolateral 

membrane (13). Munc18c is a protein associated 

with the basolateral membrane of acinar cells 

where it binds and inhibits the SNARE protein, 

syntaxin-4 (18), thereby preventing basolateral 

exocytosis. PKCα, however, has been shown to 

phosphorylate Munc18c resulting in its 

dissociation from syntaxin-4. This leads to 

syntaxin-4 activation and SNARE complex 

formation, thus allowing basolateral exocytosis of 

zymogen granules (13, 18). Thus, under 

pathological conditions, apical secretion is 

disrupted and replaced with the less-efficient 

process of basolateral secretion. 

Regulation of zymogen activation by PKC 

The effects of PKC isoforms on premature 

zymogen activation have been studied in (i) a 

model of cerulein-induced pancreatitis with 

isolated rat acini and (ii) a reconstitution 
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preparation with isolated pancreatic organelles 

and pancreatic cytosol. These studies were 

conducted with highly selective cell-permeable 

inhibitors of specific PKC isoforms (70). 

In isolated pancreatic acini, activation of PKC with 

the phorbol ester 12-O-tetradecanoylphorbol-13-

acetate (TPA; 200nM) had no affect on protease 

activity alone, but sensitized the acinar cell to 

cerulein (100 nM), resulting in enhanced 

trypsinogen and chymotrypsinogen activation. 

Pretreatment with either the broad spectrum PKC 

inhibitor GF109203X (FIGURE 5) or isoform 

specific inhibitors for PKCδ and -ε followed by 

cerulein addition resulted in a significant reduction 

in zymogen activation. In a reconstitution system, 

containing isolated pancreatic organelles and 

cytosol, with cofactors to generate active 

proteases, it was shown that effects of PKC were 

downstream of the CCK receptor (70). 

The contribution of PKCδ in secretagogue-

induced zymogen activation was verified in a later 

study using a genetic approach. Acini isolated 

from PKCδ -/- mice treated with a 

supraphysiologic concentration (100 nM) of the 

hormone cholecystokinin (CCK) showed much 

less zymogen activation than that seen in acini 

from wild type mice. Furthermore, other 

pancreatitis responses, including NF-κB 

activation, were also reduced by PKCδ deletion 

(70). 

NF-κB activation 

In acinar cells, supraphysiologic CCK, or its 

orthologue cerulein, activated NF-κB, an 

inflammatory mediator, through a PKC-dependent 

mechanism (20, 48, 67). Further, the broad-

spectrum PKC inhibitor GF109203X inhibited NF-

κB activity in a dose-dependent manner (48, 67). 

TNF-α has also been found to activate PKCδ, - , 

and -ζ but not PKCα; however, only inhibition of -δ 

and -ε isoforms prevent NF-κB activation (55). 

The addition of ethanol has also been shown to 

sensitize acinar cells to this CCK effect. PKC 

isoform specific inhibitors blocked the effect of 

CCK with or without ethanol co-treatment. NF-κB 

activation was shown to be dependent on PKCδ 

and -ε activation through the use of isoform 

specific translocation activators (56). In a mouse 

model of cerulein-induced pancreatitis, PKCδ was 

also shown to activate NF-κB and mitogen 

activated protein kinases (MAPK) (49). Further, 

inhibition of PKC in this mouse model of acute 

pancreatitis showed a significant reduction in 

neutrophil and MCP-1 chemokine infiltration in the 

pancreas. Thus PKCδ appears to mediate pro-

inflammatory responses in acute pancreatitis (49). 

d.  Other targets of PKC 

PKC substrates are phosphorylated at 

serine/threonine residues within a basic 

consensus sequence (R-X-X-S/T-X-R-X) (41). 

The pseudosubstrate domain of PKC maintains 

the kinases’ inactivity by mimicking the  amino 

acids of a basic consensus sequence but with 

critical substitutions at the serine/threonine 

phosphorylation sites (39, 45). The list of 

downstream targets for PKC is extensive. A 

number of these targets are discussed below, in 

the context of the pancreas, and their relevance to 

pancreatic function and pathology. 

Substance P and neurokinin-1 receptor 

A recent study indicates that substance P, a 

neuropeptide, and neurokinin-1 receptor 

involvement in acute pancreatitis may be 

mediated by PKC. It was shown that cerulein 

induced substance P/neurokinin-1 receptor up-

regulation is blocked by PKC inhibition. In 

particular, pretreatment with inhibitors of PKCα 

(Gö6976) and PKCδ (rottlerin, 1-10 μM) were 

responsible for this effect (32). 

Binding proteins (MARCKS protein) 

Various binding proteins, including the MARCKS 

protein, function as PKC substrates. These 

binding proteins are involved in intracellular or 

plasma membrane interactions with cytoskeletal 
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elements (23). The MARCKS (myristoylated 

alanine-rich C kinase substrate) protein is 

involved in a host of activities such as the 

regulation of cellular migration and adhesion and 

endo-, exo- and phago-cytosis (2). This family of 

proteins is also believed to mediate regulation of 

the actin cytoskeleton (2). Whether they 

participate in actin redistribution during acute 

pancreatitis has not been determined. 

Protein kinase D (PKD) 

Protein Kinase D1 (formerly known as PKC μ) is a 

serine/threonine kinase that is distinct in terms of 

structure and regulatory properties from the 

isoforms comprising the PKC family. Activation of 

PKC involves PKC-dependent phosphorylation of 

Ser-744 and Ser-748 in the PKD1 activation loop. 

(50, 74-76).  PKD1 was shown to mediate NF-κB 

activation induced by supraphysiologic CCK-8 

and carbachol and to be a downstream target of 

PKCδ and -ε. This study identified PKD1 as a 

possible early convergent point for PKCδ and -ε 

(80). Further, knockdown or overexpression of 

PKD1 resulted in decreased or increased NFκB 

activity, respectively (80). PKC-dependent PKD 

phosphorylation has also been shown to regulate 

NF-κB activation in other cell types (12, 37, 62-

64)). Inhibition of PKD with the chemical inhibitor, 

CRT0066101, was found to reduce zymogen 

activation, amylase secretion, and NF-kB 

activation (72). 

Additional cellular targets of PKC 

The CCK1 receptor has indirectly been shown to 

be a PKC substrate, but the effects of 

phosphorylation are unknown. CCK stimulates 

mitogen-activated protein kinase (MAPK) 

activation, which is PKC-dependent (15). This 

activation also results in activation of ras. Thus, 

PKC is involved in both the short-term responses 

associated with serine/threonine phosphorylation 

as well the long-term cellular responses 

associated with tyrosine phosphorylation (e.g. 

ras). PKC has also been shown to phosphorylate 

intracellular Ca2+ release channels such as the 

inositol [1,4,5] trisphosphate receptor (IP3R) (17). 

Whether PKC-mediated phosphorylation of IP3R 

contributes to sustained elevations of intracellular 

Ca2+ during acute pancreatitis is unclear. Further, 

PKC is known to phosphorylate and activate the 

Na+/H+ exchanger, thus modulating cytoplasmic 

pH (25). Fluctuations in acinar cell pH can 

promote pancreatitis responses, although it has 

not been determined if these are PKC-mediated 

(5). 

e. PKC effects in other pancreatic cell types 

Several studies have demonstrated that PKC may 

be involved in various functions in other 

pancreatic cells types (duct epithelial cells, 

stellate cells, and islet cells) aside from acinar 

cells.  

Duct cells 

In duct cells PKC activation enhances exocytosis 

in a Ca2+ -independent manner  (31). Protease-

activated receptor-2 (PAR-2) has been found to 

mediate PKC-stimulated exocytosis (27). PKC 

also mediates bicarbonate (HCO3
-) secretion.  

Secretin-stimulated HCO3
- secretion is inhibited by 

substance P (SP). The inhibitory effect of SP is 

mediated by PKC. Activation of PKC results in 

reduced basal HCO3
- secretion and complete 

block of secretin-stimulated secretion, whereas 

PKC inhibition reverses the inhibitory effect of SP 

(22).   

Pancreatic stellate cells (PSC) 

Pancreatic stellate cells (PSC) are best known for 

their role in promoting pancreatic fibrosis, but may 

also release acetylcholine and signal to acinar 

cells. Multiple studies have demonstrated a role 

for PKC in PSC activation (1, 19, 43).    PKC is 

involved in regulating ethanol-induced PSC 

activation. Ethanol can activate PKC and other 

intracellular signaling molecules of the MAPK 

pathway while inhibition of PKC blocks PSC 

activation (1). A link between high glucose 

concentrations and PSC activation has been 
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identified and may be mediated via a PKC-p38 

MAPK pathway (43). 

Islet cells (ß cells) 

In islet cells, pharmacological activation of both 

cPKCs and nPKCs is necessary to induce insulin 

secretion, but only when combined with a stimulus 

for raising intracellular Ca2+ (81). Furthermore, 

studies in which PKC was either inhibited or 

down-regulated demonstrated that PKC is 

partially required for insulin secretion induced by 

muscarinic receptor agonists (3, 46, 69). 

Knockout mouse models have been used more 

recently to address roles of nPKCs and aPKCs in 

β-cell function. Deletion of aPKCι/λ results in 

decreased glucose-stimulated insulin secretion 

(GSIS) (21), although this seems to be related to 

β-cell differentiation rather than stimulus–

secretion coupling. A partial requirement for PKCδ 

in GSIS was also suggested from knockout 

mouse studies (73), although its activation by 

glucose was not observed in prior reports (77). 

Moreover, a role in GSIS was not supported when 

kinase-dead PKCδ was overexpressed in isolated 

rat islets using adenovirus (10). Therefore, a role 

in secretion for this isoform does not seem likely. 

Genetic deletion of PKCε however, results in a 

normalization of glucose tolerance in fat-fed mice 

due to an enhancement of insulin availability 

rather than improved insulin-sensitivity. This 

finding was confirmed by comparing GSIS from 

islets isolated from wild-type and PKCε-knockout 

animals chronically exposed to elevated fatty 

acids in tissue culture (6). The secretory defects 

induced under these conditions were prevented 

by deletion of PKCε. 

The aPKCs are strongly implicated as regulators 

of β-cell proliferation. PKCζ, through mTOR 

activation, has been shown to modify the 

expression pattern of β-cell cycle molecules 

leading to increased β-cell replication and mass 

with a concomitant enhancement in β-cell function 

(6). Thus, PKC isoforms have varied functions in 

pancreatic ß-cells, ranging from secretion through 

to proliferation and apoptosis. 

f. Summary 

PKC isoforms -α, -δ, -ε, and -ξ have been 

identified in the exocrine pancreas.  In particular, 

various studies support a role for the novel PKC 

isoforms δ and ε in pathologic zymogen activation 

while PKCα may play a role in basolateral 

secretion. The PKC isoform involved in apical 

secretion has yet to be conclusively identified. 

PKC isoforms also have varied functions in other 

pancreatic cell types. Future studies may reveal 

more about the role of PKC isoforms in diseases 

such as pancreatitis and diabetes, and may have 

therapeutic implications for the disease. 

3. Tools for the study of PKC 

a. Activators 

 Phorbol ester 12-O-tetradecanoylphorbol-13-

acetate (TPA); Sigma-Aldrich  

Phorbol ester Phorbol-12,13-dibutyrate (PDB); LC 

Laboratories: Less potent than TPA but also less 

hydrophobic and thus easier to wash out of cells; 

Also tritium labeled form available. 

Also please see: Nelson and Alkon 2009 (38) 

b. Inhibitors 

In general, PKC inhibitors are classified in terms 

of their inhibition sites: 1) catalytic functional sites 

(ATP competitive binding), 2) effector sites 

(regulatory C1 domain binding), and 3) protein 

substrate sites. The putative PKC inhibitor 

staurosporine inhibits at the ATP binding site 

similar to the structurally derived bis-

indolymalemides (i.e. GF-109203X, Gö6976, 

Gö6983). However, staurosporine is not selective 

for PKC thus the bis-indoylmalemide inhibitors 

were developed and even more specific inhibitors 

ruboxistaurin (LY333531) and enzastaurin 

(LY317615) have been designed (61).  
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PKC 

GF-109203X (Bisindolymaleimide I); Calbiochem, 

LC Laboratories. Inhibits most PKC isoforms 

1. Gö6976; Calbiochem, LC Laboratories. 
Inhibits conventional PKC isoforms (α, β, γ)  
2. Gö6983; Calbiochem, Sigma-Aldrich. A broad 
spectrum PKC inhibitor. 
3. Rottlerin; Calbiochem. Reported to be PKCδ 
specific but has nonspecific actions 
4. Chelerythrine, a selective cell-permeable plant 
derived benzophenanthridine alkaloid inhibitor; 
Sigma-Aldrich.   
5. Calphostin C, highly selective PKC inhibitor 
but requires light for activation;  
 
Isoform specific translocation inhibitors originally 
developed by D. Mochly-Rosen (14) as reported 
for use in the pancreas by J. Reeve Jr. (University 
of California, Los Angeles) (55, 56)). The 
inhibitors were synthesized as an amino terminal 
extension to Drosophila antennapedia (R-QI-K-I-
W-F-Q-N-R-R-M-K-W-K-K) for cell permeability.   
 

6. PKCδ translocation inhibitor (δV1-1: S-F-N-S-
Y-E-L-G-S-L) 
7. PKCε translocation inhibitor (εV1-2: E-A-V-S-
L-K-P-T) 
8. Scrambled peptide (L-S-E-T-K-P-A-V) 
9.  
 PKD: 

1. CRT0066101; obtained from Cancer Research 

Technology, London, UK 

c. Antibodies 

PKC: 

1. Rabbit anti-PKCδ or -ε, 1:200 (WB), 1:100 
(IF); Santa Cruz Biotechnology 
2. Rabbit anti-PKCα; Cell Signaling 
 
PKD: 

1. PKD1/PKD2 C-20; Santa Cruz 
2. Phosphoserine 744/748 PKD/PKD1 (detects 
primarily the phosphorylated state of Ser-744; an 
indirect marker of activation); Cell Signaling 
3. Phosphoserine 916 PKD/PKD1, indirect 
marker of activation; Cell Signaling 
 

d. Viral Vectors 

1.  NF-kappaB activation: Adenoviral transfer of 

active subunit (RelA/p65 or Adp65) as described 

by Chen, Logsdon and colleagues (11) 

2.  Wild type and dominant negative adenoviral 

vectors (PKC-α, -δ, -ε) as described by Braz et al 

(7). 

e. Mouse lines 

PKCα (-/-) mice as described by Letiges et al (34). 

PKCδ (-/-) mice and littermate wild-type (+/+; 

C57BL/6 background) mice. Bred at Veterans 

Affairs Greater Los Angeles Health Care System, 

Los Angeles, California. Mice initially generated 

by Miyamoto et al [2002] by replacement of the 

first and second exons of PKC genes with a 

neomycin-resistance cassette.   

PKCε (-/-) mice and wild type (+/+; C57BL/6 

background) mice.  Generated by intercrossing 

129SvJaex C57Bl/6 hybrid PKCε+/-  (24, 26). 
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