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1.General Structure and Function  

In 1981, de Bold and co-workers reported that the 

administration of an atrial homogenate to rats 

induced diuresis and natriuresis, thereby 

establishing for the first time the connection 

between the heart and the kidney (10). Soon 

afterwards, the substance with diuretic and 

natriuretic properties present in atrial extracts was 

identified as a 28 amino acid peptide containing 

an intra chain disulfide bond that was termed 

atrial natriuretic factor (ANF, also referred to as 

atrial natriuretic peptide [ANP]) (13). This was a 

hallmark in the physiological field because it 

advanced the concept that the heart was not only 

a mechanical pump, but also an endocrine organ. 

Homologous natriuretic peptides (NPs) were also 

isolated and characterized: B-type natriuretic 

peptide (BNP), which shows activities similar to 

ANF and C-type natriuretic peptide (CNP) which 

has weak natriuretic and diuretic properties and 

functions mostly as a paracrine/autacrine factor 

(57-59). All three members contain the conserved 

sequence CFGXXXDRIXXXXGLGC where X 

stands for any amino acid. The flanking cysteines 

form a 17-amino acid disulfide linked ring that is 

critical for biological activity (30). The family of 

NPs plays a relevant role in the regulation of 

cardiovascular function as well as in sodium and 

water homeostasis (11). ANF and BNP are 

predominantly synthesized, stored and released 

by the heart upon mechanical (atrial stretch) 

and/or neuroendocrine stimuli (endothelin-1 or -

adrenergic stimulation) whereas CNP is mainly 

produced by endothelial cells and neurons 

(8,25,57). Later studies revealed the existence of 

extra-cardiac sites of production for ANF including 

the brain, gastrointestinal tract, liver, and salivary 

glands among others (8,16,22). The stimuli 

promoting the release from these sources still 

remain elusive but it has been suggested that in 

the gastrointestinal tract, intestinal distention, 

analogous to atrial stretch, would stimulate ANF 

release. Cholinergic and peptidergic neural 

pathways have also been shown to mediate the 

release of ANF by the stomach (15). NPs 
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released by extra cardiac sources function as 

paracrine and/or autacrine factors rather than 

hormones. Like many peptides, NPs are 

synthesized as prepropeptides and following 

signal peptide removal they undergo an additional 

proteolytic cleavage to render biologically active 

peptides. They are degraded by extracellular 

proteases and a receptor-mediated mechanism 

(40,42). Biochemical, immunohistochemical, and 

molecular biology studies indicate that NPs and 

their receptors are quite widespread in their tissue 

distributions, suggesting pleiotropic actions at 

both systemic and local levels.  

The cellular responsiveness of NPs is manifested 

through specific cell surface receptors widely 

spread in different target tissues (38,40). Three 

single membrane-spanning receptors have been 

characterized: NPR-A, NPR-B, and NPR-C which 

display distinct affinities for the members of the 

family (14,40,60). As NPR-A and NPR-B were first 

identified as guanylyl cyclase (GC) family 

members they are also referred to as GC-A and 

GC-B. ANF preferentially binds to NPR-A and 

NPR-C whereas CNP binds to NRP-B (24,60). 

The NPR-C binds all NP with similar affinity and it 

is the most abundant receptor in all tissues 

including the digestive system.  

NPR-A and NPR-B have a relative molecular 

mass of approximately 120 kDa and the same 

overall topology (30,60) (Figure 1). The 

extracellular binding domains of NPR-A and NPR-

B show approximately 44% sequence identity 

whereas the GC catalytic regions show 88% and 

the tyrosine kinase domains 60% identity. 

Although the physiological significance of the 

tyrosine kinase domain has not yet been 

established, it has been shown that it binds ATP 

leading to increased efficacy of the receptor 

function. Ligand binding to NPR-A and NPR-B 

activates particulate GC causing a rapid increase 

in cGMP which in turn activates downstream 

effectors such as cGMP dependent protein 

kinases, cGMP gated ion channels and cGMP 

sensitive phosphodiesterases in order to bring 

about biological responses (40,42). NPR-A and 

NPR-B can be phosphorylated on various serines 

and threonines residues at the amino terminal 

portion of the kinase homology domain (41). 

Dephosphorylation of these sites causes receptor 

desensitization as opposed to G-protein receptors 

which are desensitized by phosphorylation (41). 

Gycosylation sites are also present in the 

extracellular domain and, although such sites are 

not involved in ligand binding, they are essential 

for the expression of functional receptors (30,32). 

It was initially proposed that signaling by NPR-A 

was mediated by hormone-induced receptor 

dimerization in a mechanism analogous to those 

proposed for the growth hormone and cytokine 

receptors but later it was shown that dimerization 

itself is not responsible for GC activation (25,30). 

Most studies indicate that the physiological 

receptor dimer structure is represented by the 

“head-to-head” dimer (31). The receptor contains 

a unique structure near the membrane termed 

juxtamembrane signaling motif that it is strictly 

conserved among GC coupled receptors (21). 

Upon ligand binding the extracellular domain 

monomers undergo a twisting motion proposed to 

initiate signaling (31). NPR-A is mostly found in 

peripheral organs and mediates most of the 

known actions of ANF. NPR-B is localized mainly 

in the brain and vascular tissues and mediates the 

actions of CNP in the central nervous system and 

the vascular bed (38,40).  
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Figure 1. Schematic representation of natriuretic peptide receptors: NPR-A, NPR-B and NPR-C and 
coupled signaling. ECD: Extracellular domain; KHD: kinase homology domain; GCD: guanylyl cyclase domain; 
AC: adenylyl cyclase; aPLC: activated phospholipase C; iPLC: inactivated phospholipase C; DAG: diacylglycerol; 
IP3: inositol triphosphate. 

On the other hand, NPR-C receptors are 

disulphide linked homodimers with a single 

transmembrane domain, an extracellular domain 

of approximately 440 amino acids and a short 37 

amino acid intracellular tail that bears no 

homology to any other known receptor protein 

(3,14,63) (Figure 1). The extracellular domain is 

about 30% identical to the cyclase linked 

receptors, it is glycosylated on three Asn (41, 248 

and 349) and contains two sets of disulfide bonds 

between Cys63-Cys91 and Cys168-Cys216 which 

are conserved in NPR-A and NPR-B (40,56). This 

receptor subtype is devoid of the GC and tyrosine 

kinase domains. Given its small intracellular 

structure NPR-C was initially considered a 

biological silent receptor involved in the clearance 

of bound ligands by internalization and 

degradation (28). However, following its 

discovery, accumulating evidence supported that 

several ANF-mediated responses involved 

intracellular signaling distinct from the cGMP 

pathway (3). In this regard, we and others showed 

that ANF stimulates phospholipase C (PLC) (2,6). 

Later studies showed that the cytoplasmic domain 

of NPR-C contains several Gi activator sequences 

characterized by the presence of two basic amino 

acids at the NH2 terminal and B-B-X-B or B-B-X-

X-B at the COOH terminal, where B and X denote 

basic amino acid and non-basic amino acid, 

respectively (2,34,37). NPR-C is coupled to a Gi 

guanine nucleotide regulatory protein(2,18,35). 

The subunit of Gi inhibits adenylyl cyclase 

lowering cAMP levels whereas βγ subunits 

activate PLCβ increasing phosphatidylinositol 

turnover (44,45,55) (Figure 1). However, NPR-C 

is not a traditional G-protein coupled receptor in 

that it is not a heptahelical receptor with seven 

transmembrane spanning domains as the majority 

of receptors coupled to inhibitory and stimulatory 

G proteins.  
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Actually, NPR-C is considered a disulfide-bridged 

homodimer of 67 and 77 kDa subunits 

(4,44,45,55,63,64) where the former is coupled to 

adenylyl cyclase inhibition and PLC activation 

whereas the latter is involved in ligand 

internalization as a clearance receptor 

(33,35,40,45,55,63).The cellular mechanisms 

underlying NPR-C-mediated NP internalization 

and degradation are similar to those of the 

receptors for low-density lipoproteins. Similar 

features include lysosomal ligand hydrolysis and 

recycling of the ligand-free receptor back the 

plasma membrane (42). Although not 

demonstrated yet, internalization is believed to 

occur through a clathrin-dependent mechanism. 

The receptor subtype signaling through Gi is the 

predominant NP receptor in visceral and vascular 

smooth muscle cells. Unfortunately there are no 

selective antagonists for NP receptors, the only 

available pharmacological tool is des[Gln18, 

Ser19, Gly20, Leu21, Gly22]ANP4-23-amide (c-

ANP4-23), which is a truncated peptide that 

selectively binds to NPR-C and displays no affinity 

for NPR-A or NPR-B (28). This ring deleted 

analog of ANF has helped to reveal NPR-C 

function and regulation. 

A variety of genetically engineered mice have 

been generated to study the physiological function 

of the components of the NP system, but their 

description is beyond the scope of the present 

review (23). 

2. Specific Function in the Pancreas  

The participation of ANF in the regulation of 

gastrointestinal physiology is supported by the 

finding that ANF gene expression varies 

according to feeding and fasting conditions (17). 

Studies from our laboratory reported that centrally 

or peripherally applied ANF and CNP exert 

biological actions mainly through NPR-C 

activation in the liver, pancreas and salivary 

glands and NPRA/NPRB in the central nervous 

system (6,7,47-53,61). Other gastrointestinal 

effects reported for ANF include regulation of 

intestinal motility and secretion as well as gastric 

acid secretion (9,29). We found that centrally 

applied CNP stimulates pancreatic secretion 

through vagal pathways and further that it 

interacts with secretin and cholecystokinin (CCK) 

in the brain to modify pancreatic function (47). 

CNP action is not mimicked by c-ANP4-23 

supporting that brain GC coupled receptors (NPR-

A/NPR-B) mediate the response (47). CNP also 

stimulates amylase release in isolated pancreatic 

acini through the activation of NRP-C receptors 

coupled to PLC activation showing a 

concentration-dependent biphasic response 

similar to that elicited by known pancreatic 

secretagogues (49). Early immunohistochemical 

studies revealed the presence of immunoreactive 

ANF in acinar and centroacinar cells as well as 

cells of the intercalated ducts in the pancreas and 

nerve fibers (1). It was also reported that 

pancreatic acini exposed to ANF show a rapid 

increase in cGMP synthesis but without an effect 

on the secretory process either basal or 

stimulated by CCK, secretin or carbachol (19). 

Later studies from our laboratory in rats showed 

that the three natriuretic peptide receptors are all 

present in the exocrine pancreas (49). We found 

that ANF stimulates pancreatic exocrine secretion 

in a dose-dependent fashion through NPR-C 

receptors coupled the phosphoinositide pathway 

(53). ANF further enhances the secretory 

response to CCK and secretin supporting an 

interaction with the major hormones controlling 

pancreatic function and suggesting that ANF 

could have a CCK-like effect. ANF increases 

phosphoinositide hydrolysis but fails to affect 

basal or forskolin-evoked cAMP levels (53). 

However it reduces secretin-evoked cAMP 

content in the pancreas showing that it does not 

behave like CCK at the signaling level since this 

hormone does not affect cAMP content stimulated 

by secretin (50). When the intracellular 

mechanisms underlying the interaction between 

ANF and secretin were further studied we found 
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that in isolated pancreatic acini ANF abolishes 

cAMP accumulation evoked by any dose of 

secretin (50). However lower doses of ANF 

(<100nM) dose-dependently reduce EC-50 

secretin-evoked cAMP. These findings correlate 

with in vivo experiments showing that 

subthreshold doses of ANF potentiate secretin-

evoked secretion whereas higher doses blunt 

secretin secretory response (50). ANP fails to 

affect cAMP levels stimulated by amthamine 

(selective H2 agonist) or isoproterenol (β-

adrenergic agonist) but it abolishes vasoactive 

intestinal peptide (VIP)-induced cAMP formation 

similar to effects on secretin (50). It should be 

noted that the intracellular amount of cAMP 

induced by secretin or VIP is considerably higher 

than that evoked by amthamine or isoproterenol. 

We found that the mechanisms underlying 

negative regulation of secretin-evoked signaling 

by ANF involves cAMP efflux to the extracellular 

compartment through multidrug resistance 

proteins (MRPs) (43). Although three members of 

this family have been identified as ATP-

dependent export pumps for cyclic nucleotides, 

MRP4 shows higher selectivity for cAMP 

(12,46,54,62). ANF enhances cAMP efflux 

induced by secretin and VIP through NPR-C 

receptors coupled to the PLC/PKC pathway (43). 

However it does not affect amthamine or 

isoproterenol evoked cAMP which correlates with 

the finding that cAMP egression is closely related 

to the amount formed within cells. In time-course 

studies with active phosphodiesterases, levels of 

intracellular and extracellular cAMP increase 

earlier after the addition of secretin and ANF (1 

min) than after the addition of secretin alone (3 

min) (43). Furthermore, extracellular cAMP is 

observed earlier in the presence of ANF. Secretin 

by itself also promotes cAMP efflux, but the 

mechanism does not involve the PLC/PKC 

pathway (43). It was proposed that cyclic 

nucleotide egression operates when 

phosphodiesterase activity is limited but our 

findings as well as several studies in other cell 

types show that the efflux of cAMP occurs in the 

presence of active phosphodiesterases and 

appears to be related to a high content of the 

nucleotide formed which might eventually become 

harmful to the cell. We found that in the exocrine 

pancreas MRP4, MRP5 and MRP8 mRNAs are 

expressed but only MRP4 is detected at the 

protein level. By the siRNA approach we identified 

in AR42J cells that MRP-4 mediates secretin-

evoked cAMP efflux (43). We found that these 

cells express the three members of the MRP 

family involved in cyclic nucleotide egression, 

MRP4, MRP5 and MRP8. The efflux of cAMP 

occurs in AR42J cells exposed to secretin and is 

dramatically reduced in cells expressing MRP4 

small interfering RNA, supporting that the efflux is 

mediated by MRP4 (43). The egression of cAMP 

by MRPs may represent an additional mechanism 

to phosphodiesterase action and receptor 

desensitization to restrict the intracellular 

accumulation of the cyclic nucleotide within the 

pancreatic cells. In rats, levels of cAMP in plasma 

and pancreatic juice increase after infusion with 

secretin alone, but levels of the cyclic nucleotide 

are further enhanced in the presence of ANF (43). 

Figure 2 illustrates the proposed regulation of 

secretin coupled signaling by ANF through NPR-C 

receptors in the exocrine pancreas. 
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Figure 2. ANF signaling through NPR-C receptor in the exocrine pancreas. AC: adenylyl cyclase; PKA: 
protein kinase A; PCK: protein kinase C; PLC: phospholipase C; MRP4: multridrug resistance associated protein 
4; PDEs: phosphodiesterases; IP3: inositol triphosphate; 4-23 ANP: NRP-C selective agonist; GF109203: PKC 
inhibitor; U73122: PLC inhibitor; probenecid: general inhibitor of MRPs; forskolin: direct activator of adenylyl 
cyclase catalytic subunit. 

Although egression of cAMP is supported by 

several studies, the physiological significance of 

extracellular cAMP still remains to be fully 

elucidated (5,20). ANF by enhancing cAMP efflux 

would possibly play a beneficial role in 

pathophysiological situations like acute 

pancreatitis provided that it has been shown that 

cAMP sensitizes pancreatic granules in a context 

of PLC activation (27,39). Preliminary studies 

from our laboratory support the protective role of 

ANF in the early events triggering acute 

pancreatitis.  

3. Tools to Study Natriuretic Peptide 

System  

a. Peptides 

Synthetic peptides ANF, CNP and c-ANP4-23 

(NPR-C selective agonist) are commercially 

available from American Peptide (#14-5-4, #14-1-

53, and # 14-1-45)  

b. Antibodies 

Rabbit polyclonal antibody raised against amino 

acids 141-440 of NPR-C is commercially available 

from Santa Cruz Biotechnologies (sc-25487).  

c. Animal models 

Genetically engineered mice have been 

generated to study NPs and their receptors (23).  
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