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1. General Information 

In 1907, Michael Lane described his anatomical 

observations of the pancreatic islets of 

Langerhans as cells with distinctive anatomical 

properties versus the earlier theory as those of 

“exhausted acini”(58). In his characterization of 

stained hamster pancreatic sections, Lane  

described the existence of two distinct types of 

cells within the islet, which he referred to as the 

large α and smaller β cells (58). Four decades 

later, Sutherland and de Duve established that the 

α-cells of the pancreatic islet are the primary 

source of glucagon (95,96).  Initially labeled as a 

contaminant, the physiological role of glucagon 

was first described in 1921, when Banting and 

Best conducted their classical experiments of 

insulin’s actions. Banting and Best tested their 

first pancreatic extracts in depancreatized dogs 

and observed an initial transient rise in blood 

glucose followed by the insulin-induced 

hypoglycemia (36). Several years later, Murlin 

and his colleagues credited this transient rise in 

blood glucose to a hormone they named 

“Glucagon” or “Hyperglycemic-Glycogenolytic 

Factor” (28,36,71). Insights into the regulation of 

glucagon release came from elegant cross-

circulation experiments performed by Foa and his 

colleagues in the 1950s,  showing that 

hypoglycemia triggered by the injection of insulin 

in a donor dog induces the release of glucagon, 

which secreted through the donor blood via a 

pancreatic-femoral anastomosis causes a 

hyperglycemic response in a recipient dog  (28). 

Bensley and Woerner added to these 

observations with their suggestion that glucagon 

induces liver glycogenolysis and thereby 

promotes a rise in blood glucose levels (4).  

Glucagon is a 29-amino acid peptide derived from 

the tissue specific-processing of proglucagon in 

pancreatic α-cells through cleavage by 

prohormone convertase 2 (PCSK2) (Figure 1) 

(30). In contrast, processing of proglucagon to 

glucagon-like peptides (GLP-1, GLP-2), 

oxyntomodulin and glicentin occurs in intestinal 

enteroendocrine cells ( Figure 1) (62). Glucagon 

plays a major role in antagonizing the effects of 

insulin and maintaining glucose homeostasis by 

promoting hepatic gluconeogenesis and 

glycogenolysis and inhibiting glycogen synthesis. 

Therefore, the secretion of glucagon is normally 

induced in states of decreasing blood glucose, 

such as fasting and increased energy 

expenditure, to sufficiently induce a rapid, yet 

transient, rise in blood glucose. However, 

aberrant secretion of glucagon is a characteristic 

of Types I and II Diabetes. Increased secretion of 
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glucagon is observed in patients with Type II 

Diabetes, leading to an increase in hepatic 

glucose output and exacerbating the 

hyperglycemic state (19,63,79,84,106,107). In 

contrast, failure to secrete adequate glucagon in 

response in hypoglycemia is a limiting factor for 

glucose control, contributing to the morbidity and 

mortality of patients with Type I Diabetes (15,33). 

 

Figure 1. Diagram of differential processing of the proglucagon gene 

product in α-cells of the pancreas, gut (L-cells) and brain.  Only biologically 

active products are shown.  For further details of cleavage sites and processing 

see reference (62).   

2. Glucagon and the Endocrine 

Pancreas 

The pancreatic islet comprises five major types of 

polypeptide-secreting cells: insulin-secreting β-

cells (65-80% of total islet cells), the glucagon 

secreting α-cells (15-20%), somatostatin-secreting 

δ-cells (3-10%) and pancreatic polypeptide-

secreting cells (3-5%), along with ghrelin-positive 

cells which are mostly observed in early 

development (103). The five major islet cell types 

are aligned on blood vessels at no particular order 

or structured organization within the human islet 

(8) (Figure 2A). In contrast, the rodent islet shows 

a more-defined architecture placing the β-cells in 

the core and the α, δ and PP-cells lying at the 

mantle of the islet (Figure 2B). This unique 

structure in the rodent islet suggests an organized 

system allowing paracrine interactions between 

the peptides released. This is supported by 

studies showing that arterial blood is directed from 

the core of the rodent islet (insulin-secreting β-

cells) to the periphery  (6). Therefore, during a 

rise in blood glucose, the pancreatic α-cells are 

exposed to high levels of secreted insulin leading 

to the inhibition of glucagon secretion and 

glucagon gene transcription. 

3. Regulation of Glucagon Release 

The secretion of glucagon by the α-cells is 

regulated by the effects of paracrine/endocrine 

factors as wells as neuronal inputs. Glucagon 

release is inhibited after carbohydrate-rich meal 

and the consequent rise in blood glucose and 

insulin secretion. However, a meal rich in amino 

acids induces glucagon release. Parasympathetic 

(vagal) and sympathetic (Epinephrine, 



Norepinephrine, Galanin, Neuropeptide Y) nerve 

stimulations induce the secretion of glucagon from 

the pancreatic α-cells.  

Glucose 

Glucagon is secreted by the pancreatic α-cells in 

states of decreasing blood glucose; however, 

whether changes in glucose concentrations alone 

can regulate glucagon secretion still remains 

unclear. High glucose concentrations inhibit 

glucagon release in the intact islet; however, high 

glucose induces glucagon release in dispersed, 

isolated α-cells. These data support the notion 

that the paracrine interactions of the islet cells, in 

particular the secreted insulin/GABA and 

somatostatin, act as primary regulators by 

suppressing glucagon secretion in hyperglycemia 

(76). However, the chronic exposure of α-cells to 

high glucose levels has been shown to induce α-

cell dysfunction and insulin-resistance, closely 

mimicking the diabetic state (21, 92). 

Rat α-cells express glucokinase and glucose 

transporter GLUT1, an isoform with a lower 

capacity compared to GLUT2, which is the 

predominant form in insulin-secreting β-cells (42). 

Despite differences in metabolism of glucose by 

the two cells types, studies have shown that they 

share similar inherent mechanisms of activation 

(76). Alpha cells have high ATP concentrations 

under low glucose, which rise further after 

stimulation with high glucose. The glucose-

stimulated inhibition of glucagon secretion was 

associated with an inhibition of AMPK activity and 

activating AMP-activated protein kinase (AMPK) 

in turn inhibited secretion (59). Therefore, α-cells 

do have intrinsic mechanisms, which respond to 

glucose stimulation, but synergize with extrinsic 

paracrine signals to regulate secretion under high 

glucose stimulation (31).  

Contrary to the regulation of glucagon release in 

high glucose conditions, it has been shown that 

extrinsic paracrine signals (insulin/GABA, 

somatostatin) do not play a role in regulating 

glucagon secretion in low glucose concentration 

(1-6 mM) (99). This is supported by in vivo 

findings showing that inhibiting insulin signaling in 

the pancreatic α-cells of mice through a loss of α-

cell insulin receptors leads to an increase in 

glucagon secretion in both hyperinsulimic-

hypoglycemic and STZ-induced hypoinsulimic-

hyperglycemic state. Therefore, these data shows 

that insulin is necessary for inhibiting glucagon 

secretion in hyperglycemia; however, insulin does 

not play a role in regulating glucagon secretion in 

low-glucose conditions (52).  

Insulin and GABA   

Pancreatic α-cells are exposed to high levels of 

insulin secreted from the β-cells in the islet. 

Insulin is a potent inhibitor of glucagon secretion 

and glucagon gene transcription 

(2,67,78,101,107). Data have shown that the 

diminished insulin release during hyperglycemia 

associated with diabetes paradoxically stimulates 

the release of glucagon (19,79,106). Studies 

utilizing in vitro approaches have shown that 

insulin receptors are very abundant on pancreatic 

α-cells and activate the phosphatidyl inositol 3-

kinase (PI3K)-Akt pathway leading to inhibition of 

glucagon gene transcription and secretion 

(82,84,105). Insulin has been shown to induce the 

Akt-dependent GABAA receptor translocation to 

the plasma membrane (which can be activated by 

GABA (co-released with insulin) and PI3K-

dependent opening of KATP channels, culminating 

hyperpolarizing the plasma membrane and 

inhibiting glucagon secretion (29,105). Although, 

the precise mechanisms responsible for changes 

in the α-cell function in diabetes remain unclear, a 

recent study by Kawamori and colleagues showed 

that inhibiting insulin signaling in the pancreatic α-

cells of mice through a loss of α-cell insulin 

receptors leads to altered glucose metabolism, 

including mild glucose intolerance, hyperglycemia 

and hyperglucagonemia (52).  

GABA (γ-Aminobutyric acid) is produced from the 

excitatory amino acid glutamate and co-released 

with insulin from the pancreatic β-cells by high 

glucose and glutamate stimulation. GABA can 

diffuse within the islet interstitium to activate 

GABAA receptors present on the cell-surface of α-



cells (102). This nonpeptidal neurotransmitter has 

been shown to act as a suppressor of amino acid-

stimulated glucagon release in the mouse and 

isolated α-cells via GABAA  receptors (35).  Data 

have suggested that glucose-stimulated insulin 

release and the subsequent activation of the 

Insulin Receptor-PI3K-Akt pathway induces the 

activation and translocation of GABAA receptors 

to the plasma membrane (105). The GABA co-

released with insulin from the β-cells can activate 

the newly translocated cell-surface GABAA 

receptors and increase Cl- inhibitory currents, 

subsequently hyperpolarizing the plasma 

membrane (102). The hyperpolarization of the 

membrane closes the voltage-dependent Ca2+ 

channels, which lowers the free cytoplasmic Ca2+ 

levels and reduces glucagon exocytosis. (80,102).  

Glucagon and Glutamate 

Perfusion experiments in the human and rat 

pancreas have shown that glucagon suppresses 

insulin and somatostatin release (7,94). Glucagon 

receptor knock-out mice exhibit α-cell hyperplasia 

and hyperglucagonemia, which has been 

suggested to be due to a lack of autocrine signals 

of glucagon on the α-cell (36).  Contrary to this 

theory, a recent study has shown that implanted 

wild-type islets in mice with liver-specific deletion 

of the glucagon receptor also develop α-cell 

hyperplasia (64). These data suggest that a 

circulating factor generated after the disruption of 

glucagon signaling in the liver can increase α-cell 

proliferation independent of direct pancreatic 

input. 

Glutamate is a major excitatory neurotransmitter 

in the central nervous system, which has also 

been implicated in the regulation of glucagon 

release. An elegant study published by Cabrera 

and colleagues described the positive autocrine 

signal of glutamate in the human, monkey and 

mouse islets (9). The authors proposed a 

mechanistic model where glutamate co-released 

with glucagon potentiates glucagon secretion 

through acting on the inotropic glutamate 

receptors on the α-cell membrane and creating a 

positive autocrine loop (9). 

Somatostatin 

Somatostatin, secreted by the islet δ-cells, has 

been long accepted as a glucagon-suppressing 

peptide. Exogenous somatostatin inhibits 

glucagon release in isolated α-cells, as wells as in 

healthy and diabetic patients (11,34). In addition, 

islets isolated from somatostatin-deficient mice 

have reduced glucose-suppression of glucagon 

release (41). 

4. Physiological Actions of 

Glucagon at Target Tissues 

 

Glucagon exerts its physiological action on target 

tissues via the G-protein coupled glucagon 

receptor, which is found on multiple tissues 

including the liver, fat, intestine, kidney and brain 

(50,68).  

In the liver, glucagon counteracts the anabolic 

properties of insulin by promoting 

gluconeogenesis and glycogenolysis which 

consequently increases glucose output. The 

hepatocyte is exposed to high levels of glucagon 

released by the pancreas via the portal vein. The 

mechanistic actions of glucagon on the 

hepatocyte are mediated by glucagon’s binding 

and activation of the glucagon receptor on the cell 

membrane, which upon conformation change 

activates G proteins. The subsequent activation of 

adenylate cyclase leads to the increase in 

intracellular cyclic adenosine monophosphate 

(cAMP) levels and the activation of protein kinase 

A (PKA) (50). The second messenger cAMP can 

activate cyclic nucleotide-gated ion channels, 

exchange proteins activated by cAMP (EPAC) 

and protein kinase A (PKA). Glucagon’s activation 

of the liver’s glucagon receptor leading to hepatic 

glucose output has been shown to act through the 

gluconeogenic process is also promoted by the 

activity of additional transcription factors. 

 

 

 



 

Figure 2. Immunofluorescent labeling of human and mouse islets. A. 

Human islet. Glucagon-positive α-cells (green) are randomly dispersed among 

insulin-positive β-cells (red) within the human islet. B. Mouse islet. Glucagon-

positive α-cells (green) are concentrated on the mantle and insulin-positive β-

cells (red) make-up the core of the mouse islet.  

The activated CREB binds to the promoter region 

of the transcriptional coactivator PGC-1 gene, 

increasing its transcription. PGC-1 and the 

nuclear transcription factor hepatocyte nuclear 

factor-4 (HNF-4) further promote gluconeogenesis 

by increasing the transcription of PEPCK gene 

and therefore PEPCK activity 50). 

In the adipocyte, glucagon activates the cAMP-

PKA pathway, leading to the phosphorylation and 

activation of hormone-sensitive lipase and the 

subsequent breakdown of triglycerides (lipolysis) 

and release of diacylglycerol and free fatty acids 

into the circulation. The liver can further utilize 

glycerol and free fatty acids for gluconeogenesis 

or re-esterification of free fatty acids to form 

ketone bodies. 

Glucagon’s physiological effects on the heart and 

kidney have also been described, although 

glucagon’s actions in these tissues are less 

understood mechanistically compared to those in 

the liver and fat. In the heart, glucagon has been 

described as a vasodilator, which lowers blood 

pressure by decreasing the vasculature 

resistance in the liver and spleen. Glucagon has 

diuretic effects on the kidney, increasing 

glomerular filtration and electrolyte excretion (26).  

Glucagon receptors are expressed in the brain 

and data has suggested that circulating glucagon 

can pass the blood-brain barrier to modulate its 

effects in the central nervous system. Glucagon 

infused in the central nervous system has 

anorexigenic effects in rats, chicks and sheep. In 

addition, intravenous infusion of glucagon has 

been shown to suppress appetite in humans; 

however, the direct link between glucagon and 

central food intake regulation in humans is 

unclear. Although, the mechanisms of glucagon’s 

activity on the brain remain largely unclear, the 

involvement of the hypothalamic corticotropin-

releasing factor (CRF) and the activation of the 

hypothalamic-pituitary-adrenal (HPA) axis are 

implicated to be involved in modulating glucagon’s 

suppression of food intake (27). 

Glucagon relaxes the GI tract from esophagus to 

colon and as a result is often used to quiet the 

bowel before endoscopic retrograde 

cholangiopancreatography (ERCP) or bowel 

imaging studies (69). In the esophagus it is used 

to relax the muscle before removal of foreign 

objects.  Glucagon also will relax the sphincter of 

Oddi (94).  These effects are almost certainly 

pharmacological but are short lived and without 

other deleterious effects. 

 

 



5. Glucagon and the Exocrine 

Pancreas 

Crystaline glucagon was first prepared in 1953 

and early reports injecting mg amounts of 

glucagon into rodents included a description of 

degranulation of acinar cells along with pancreatic 

atrophy (10,49,57,81).  This finding was 

interpreted by Jarett as due to inhibition of protein 

synthesis due to lowered plasma amino acid 

levels in vivo as glucagon did not inhibit protein 

synthesis measured by incorporation of 3H-

leucine in vitro (48).  However, these results are 

difficult to interpret because the animals given 

megadoses of glucagon lost weight and were 

reported to appear ill.  In a subsequent and more 

sophisticated study, Adler (1) infused glucagon IV 

into rats at 10-80 μg/kg/hr and found that the 

pancreas lost 80% of three digestive enzymes 

after 24 hours and EM showed viable cells but 

with few granules.  However, the 50 μg/kg/hr 

equated to 1.2 mg glucagon in 24 hours and 

clearly represented a non-physiological treatment.  

In vitro studies with isolated lobules showed that 

in-vivo pretreatment reduced subsequent protein 

synthesis and intracellular transport after 30 

minutes of infusion in vivo but not at 24 hours.  In 

a more recent study, Kash et. al (57) reported that 

30 μg/kg of glucagon every 8 hours reduced the 

trophic effect of caerulein over a 5 day period, but 

on its own did not affect pancreatic mass, protein 

or DNA. 

With the knowledge of a possible relationship 

between the endocrine and exocrine pancreas 

(43), the effects of exogenous glucagon on 

pancreatic secretion was studied in a variety of 

species both with and without anesthesia.  Initially 

most studies were carried out in unanesthetized 

dogs with pancreatic fistulas, the predominant 

animal model for GI physiology at the time, and 

glucagon (most often prepared by Eli Lilly) was 

shown to inhibit the volume, bicarbonate and 

protein or enzyme content of pancreatic secretion 

stimulated by food, acid, secretin or CCK 

(24,44,45,47,55,56,73,74,85).  In most cases a 

large amount of glucagon was used (20-30 

μg/kg/hr) and resulting plasma levels of glucagon 

were not measured or related to physiological 

levels.  Similar inhibition of pancreatic secretion 

has also been seen in studies carried out in rats 

(1,5,83), cats (54) and humans (12,18,25,40,53).  

The mechanism of the inhibition remains unclear, 

but has been assumed by most authors to be at 

the level of the pancreas because the effect of 

exogenous secretagogues was inhibited.  

Possible loci include inhibition of pancreatic blood 

flow, the resulting hyperglycemia, lowering of 

plasma calcium as well as inhibition of the 

secretory mechanism.  Glucagon could also be 

having an effect on the nervous system either 

centrally or within the pancreas. 

Some of these possible inhibitory loci could be 

better controlled using a perfused pancreas 

model.  Glucagon has been reported to inhibit 

secretion in the perfused pancreas of the cat 

(104) and rat (98).  In the latter study, infusion of 

amino acids was shown to increase glucagon and 

inhibit pancreatic secretion and this effect could 

be blocked by infusing an antibody to glucagon 

(98). Other studies, however, gave different 

results.  In a study in the perfused dog pancreas 

glucagon had no effect (72), but in a study in 

perfused rat pancreas, glucagon increased the 

basal flow and protein output. However, when 

glucagon was combined with secretin, it 

decreased the volume and protein output (91).  

Other in vitro studies have been carried out using 

pancreatic segments or lobules. In studies of rat 

pancreas lobules, glucagon increased amylase 

secretion and potentiated effects of acetylcholine, 

CCK or electric field stimulation to activate nerves 

(86,87).  By contrast, glucagon was reported to 

increase amylase release from mouse segments 

(66) or have no effect on in vitro release of 

amylase by mouse (16) or rat pancreatic 

fragments  (1).  While all of the positive in vitro 

studies imply a direct effect on the pancreas, 

there is no clear overall pattern. 

With the development of isolated pancreatic acini 

and isolated acinar cells, the effects of glucagon 

were studied and compared to the structurally 



related peptides, secretin and VIP.  Natural 

purified glucagon was shown to stimulate amylase 

release and increase cyclic AMP at high 

concentrations (1 to 100 µM) in isolated acini from 

guinea pig, rat and mouse acini (77,89,90).  The 

effect was similar to that of secretin, but observed 

at much higher concentrations.  The material did 

not interact with VIP receptors on acini and did 

not elute with purified synthetic glucagon, so its 

nature is unknown.  Most importantly, synthetic 

glucagon had no effect on amylase secretion 

(3,77).  Glucagon receptor mRNA has been 

identified in pancreas and in isolated islets by 

several techniques (22,39,70).  However, none of 

these studies specifically evaluated exocrine 

pancreas or showed receptor mRNA in acini or 

ducts.  In summary, the studies of glucagon on 

isolated acini and the current state of receptor 

knowledge do not support a direct effect of 

glucagon on acinar cells.  Moreover, some of the 

stimulatory effects of glucagon on isolated 

perfused pancreas or pancreatic fragments could 

have been due to a contaminant in natural 

glucagon. 

Because of the effect of glucagon to inhibit 

secretion in animals and humans, it was studied 

as a possible therapeutic agent in pancreatitis.  In 

animal models, glucagon protected against 

hemorrhagic pancreatitis in mice, but only when 

given before the inducing choline-deficient 

ethionine-supplemented (CDE) diet (65).  In pigs 

with retrograde injection of bile salts, glucagon 

infusion had a protective effect when started 18 

hours later (100).  Although early studies in 

humans reported some positive results (53), 

controlled trials failed to show a significant 

improvement (17,23,75). 

In summary, endogenous glucagon from the 

endocrine α-cells may have an action on the 

exocrine pancreas, but its mechanism of action 

and physiological importance is not clear.  

Supraphysiological administration can affect the 

exocrine pancreas, but its physiological 

significance is unclear.  Glucagon affects insulin 

secretion and body metabolism and these could 

also secondarily affect the exocrine pancreas.  

Whether increased glucagon levels in diabetes 

could contribute to the reduced exocrine function 

reported in diabetics is currently unclear and 

worthy of further attention. 

6. Tools for the Study of Glucagon 

Detection and Measurement 

Monoclonal and polyclonal antibodies against 

human, rat and mouse glucagon are commercially 

available for the detection of glucagon and pro-

glucagon by immunoblotting, 

immunohistochemistry, immunofluorescence, and 

immunoprecipitation (Sigma, Abcam, Santa Cruz, 

Cell Signaling). RIAs and ELISAs are also 

commercially available for the measurement of 

glucagon in human, mouse and rat serum, plasma 

as well as tissue extracts and culture media 

(Millipore, Alpco, R&D Systems). A disadvantage 

in using a RIA or ELISA to measure glucagon 

levels in the serum or plasma of mice is the large 

volume of sample required to detect baseline 

levels (50-100 µl) in a concentration range of 20-

400 pg/mL. Further modifications of these assays 

maybe required, but are not always sufficient, to 

accommodate smaller volumes. A new ELISA 

recently developed by Mercodia (Uppsala, 

Sweden) requires smaller volume (25 µl) and 

offers higher specificity of detection (5-414 

pg/mL). 

Cell Lines 

A glucagon-secreting cell, alpha TC-1, is the only 

readily available cell line for in vitro approaches to 

study the regulation of glucagon synthesis and 

secretion and can be obtained from the American 

Type Culture Collection (ATCC; Manassas, VA). 

This cells line was extracted from adenomas 

developed in transgenic mice expressing the 

SV40 large T-antigen under the rat pre-

proglucagon promoter and further differentiated in 

two clones (clones 6 and 9) which do not express 

insulin/proinsulin mRNA, somatostatin or 

pancreatic polypeptide (37).  



InR1G9 is another glucagon-secreting cell line 

often referred to in the literature. The InR1G9 cell 

line is derived from hamster glucagonoma 

(20,21,78). 

Animals 

Loss of α-cells have been observed in transgenic 

animal models with transcription factor mis-

expression resulting in either a loss of -cells or 

diverting -cell-fate into a different endocrine cell 

lineage (13,14,38,60,92). The loss of α-cell 

transcription factors Arx, Pax6 and Foxa2 results 

in a dramatic complete loss of -cells and 

circulating glucagon levels (38,60,92). In contrast, 

ectopic expression of Pax4 drives endocrine 

precursor cells and mature -cells to adapt a β-

cell fate (14). Thorel and colleagues were able to 

ablate 98% of α-cells using an inducible system of 

diphtheria toxin-mediated cell deletion in adult 

mice (97). Animal models designed to block 

glucagon’s actions by a genetic or 

pharmacological inhibition of glucagon receptor 

and inhibiting active glucagon synthesis using 

prohormone convertase 2 knock-out mice, have 

been described (30,32,61,64). 
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