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1. General Function 

Gα12/13 are the unique α subunits of a class of 

heterotrimeric G proteins along with GαS, Gαi/o, 

and Gαq.  α12 and α13 were initially cloned from a 

mouse brain cDNA library by PCR and show 67% 

amino acid identity with each other but only 35-

40% with other Gα subunits (32).  These α 

subunits are expressed in most tissues (34) and 

are activated by over 25 receptors mostly of the 

7TM class but also by some receptor tyrosine 

kinases (18,27).  A Drosophila homolog known as 

αcta is 55% identical at the amino acid level.  The 

Gα12/13 polypeptides have a Mol Wt of 43,000 and 

are not ribosylated by Pertussis or Cholera toxin.  

They are palmitoylated at a cysteine residue near 

the N-terminal which is believed important for 

plasma membrane targeting (1);  Gα12 but not 

Gα13 is located predominately in lipid rafts (37).  

This targeting also depends upon interaction with 

HSP90.  In addition, the biochemical properties of 

Gα12 can be modified by phosphorylation and 

PKC phosphorylates purified α12 (18).  Not 

surprisingly because of their divergence in 

sequence, α12 and α13 do not always show the 

same effect (2,13) and are not always activated 

by the same agonist (24).  This difference is 

mediated by a short N terminal sequence where 

homology is only 16% (39).  In addition to these 

differences, in several cell types Gα12 and Gα13 

have shown different subcellular localization with 

Gα12 localized to the plasma membrane while 

Gα13 localizes to the cyosol and upon stimulation 

translocates to the plasma membrane (40).  A 

striking difference is that Gα12 deficient mice are 

viable with no obvious phenotype while Gα13 

deficient mice die in mid-gestation with defects in 

angiogenesis (26).  This defect is due to an 

essential role for Gα13 in endothelial cells (28). 

As with other G proteins, G12/13 undergoes a cycle 

where receptor induced activation involves 

binding of GTP which is latter hydrolyzed to GDP 

returning the protein to the inactive state.  These 

changes are mediated by GEFs and GAPs with 

the receptor acting as a GEF when liganded.  

Several RGS proteins particularly RGS1 and -16 

may also regulate G12/13 (13).  Constitutively active 

forms (Gα12 Q229L or Gα13 Q226L) can induce 

transformation of fibroblasts and tumorigenesis in 

animal models.  Gα12 has a role in cell-cell 
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interactions, invasion and differentiation (14).  In 

addition to stimulating DNA synthesis, active 

Gα12/13 promotes stress fibers and cell adhesion, 

inhibits cadherin-induced aggregation, activates 

or inhibits Na+- H+ exchange, stimulates smooth 

muscle contraction, and affects secretion 

(11,13,22). Tissue specific knockout studies have 

shown the requirement for Gα12/13 for 

developmental cell migration in the brain (21).  

Gα12/13 also plays a role in platelet activation, 

cardiovascular function and immune function 

(25,38). 

Use of constitutively active mutants of α12 and α13 

has generally shown that these G proteins do not 

regulate adenylate cyclase or phospholipase C ( 

but see Ref 10 for an exception).  The most well 

studied action of Gα12/13 is to activate the small G 

protein Rho in response to a GPCR and through 

RhoA and its downstream effectors affect the 

actin cytoskeleton, cell migration and invasion, 

phospholipase D activation, protein kinase D 

activation, Na+-H+ exchange, JNK activation and 

serum response factor (SRF) production 

(4,7,13,15,22,27,30,33).  All these actions are 

sensitive to C. botulinum C3 exotoxin which 

inactivates Rho.  More recently, Rho activation 

has been directly measured through pull down 

assays.  The primary mechanism for Gα12/13 to 

activate Rho involves Rho GEFS which contain a 

RGS like domain that binds to active α12 or α13 

(31).  Three Rho GEFs have been identified with 

RGS like domains near the amino terminus, p115 

RhoGEF, PDZ-RhoGEF and leukemia associated 

RhoGEF (LARG) (6,35).  Another RhoGEF, Lbc-

RhoGEF has a RGS like domain of lower 

homology in the carboxyl terminus and is 

activated selectively by Gα12 (5).  All of these 

RhoGEFs are potent RhoA activators while the 

isolated RGS like domain from p115 RhoGEF 

when overexpressed acts as a specific inhibitor of 

G12/13 signaling through Rho.  In some cases for 

full RhoGEF activation the GEF also has to be 

phosphorylated by a nonreceptor tyrosine kinase.  

Gα13 also activates a RhoGEF without a RGS like 

domain, proto-Dbl which translocates to the 

plasma membrane where it interacts with ezrin 

(36).  In addition to these RhoGEFs, activated 

Gα12/13 can also bind to certain cadherins, the 

protein radixin of the ERM family, some 

nonreceptor tyrosine kinases (Bruton’s tyrosine 

kinase or BTK and Tec) , some AKAPS, zonula 

occludens proteins, protein phosphatase type 5  

and JNK-interacting protein (JIP) (12,13,17).  

Thus in some cell types active Gα12 or Gα13 can 

activate signaling independent of Rho.  These 

include activation of JNK, ERKs, Pyk2, and 

phospholipase A2.  For example, in a thyroid cell 

line, Gα13 but not Gα12 activated ERK and 

subsequent induction of c-Fos independent of 

Rho (3). 

2. Specific Function in the Pancreas 

Only a few studies have addressed the role of 

Gα12/13 in pancreatic cells.  Both α12 and α13 were 

reported to be present in rat pancreatic acini as 

shown by Western blotting (16).  In this study 

CCK was shown to rapidly increase the 

expression of both α12 and α13 as well as 

increasing the association of RhoA and Vav2 with 

Gα13 but not Gα12.  In mouse pancreas and 

pancreatic acini  both PCR and Western blotting 

revealed the presence of Gα13 but not Gα12 (29).  

In accord with previous studies (1), Gα13 was 

associated with a membrane fraction in both 

control and stimulated acini. 

Constitutively active Gα13 (Q226L) delivered by 

adenoviral vector was shown to activate RhoA 

similar to CCK in mouse acini and to alter the 

actin cytoskeleton leading to bleb formation (29).  

In this study, expression of a p115 RhoGEF RGS 

like domain (p115-RGS) abolished RhoA 

activation in response to CCK suggesting that the 

action of CCK receptors to activate RhoA was 

mediated by Gα12/13.  Similar results had been 

reported earlier in intestinal smooth muscle cells 

expressing Gα13 (23) and in NIH 3T3 cells 

stabely transfected with CCKA receptors (19).  A 
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mutant form of p115-RGS (E29K) failed to modify 

CCK-induced RhoA activation (29).  The effect of 

p115-RGS expression was shown to be specific 

for G12/13 signaling as it had no effect on Ca2+ 

mobilization or cAMP formation.  Expression of 

p115-RGS inhibited both basal and CCK-

stimulated amylase release.  Prior studies had 

shown that inhibition of RhoA activation by C3 

exotoxin or dominant negative RhoA also inhibited 

amylase release (2).  Thus these results suggest 

that CCK-induced activation of Gα13 in addition to 

CCK-induced activation of  Gαq/11  is responsible 

for induction of amylase secretion.  Whereas 

activation of Gαq stimulates PLC and calcium 

mobilization, activation of Gα13 induces activation 

of RhoA and reorganization of the actin 

cytoskeleton.  At present the nature of the specific 

RhoGEF activated in acinar cells by Gα13 is 

unknown.  Both p115 RhoGEF and LARG have 

been identified by PCR in acinar cells 

(unpublished data).  Whether Gα12/13 will have 

other actions in acinar cells or plays a role in other 

pancreatic cells such as pancreatic stellate cells 

remains to be determined. The position of Gα13 in 

the pathway of Rho activation in mouse acinar 

cells is shown in the schema below.  For further 

details see Gα12/13 – RhoA in the Pathways 

section. 
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3. Tools to Study Gα12/13 

a. cDNA Clones 

Multiple clones for Gα12/13 are available from 

Missouri Science and Techology cDNA resource.  

A number of investigators have prepared or used 

plasmids for Gα12/13 and their constitutively 

active mutants, Gα12 Q229L and Gα13 Q226L.  

Dominant negative mutants have also been 

prepared, Gα12 G228A and Gα13 G225A and 

shown to block stress fiber formation (8). 

b. Antibodies 

We have used antibodies from Santa Cruz to Gα12 

(sc-409) and Gα13 (sc-410) and a rabbit polyclonal 

to Gα12 from Abcam (ab35016) for Western 

blotting in our studies of mouse pancreas (29).  

Other commercial antibodies to Gα12 are listed in 

Ref (18).  A series of antibodies against peptide 

sequences and validation of their specificity was 

also carried out by the group of G. Schultz (34). 

c. Viral Vectors 

Constitutively active Gα13 Q226L in a adenoviral 

vector has been prepared and used by us in 

mouse pancreatic acini (29). 

d. Mouse lines 

Gene deletion has been carried out for Gna13 

where mice died around embryonic day 10 (26) 

and for Gna12 where mice develop normally (9).  

Mice with floxed Gna13 have been generated and 

used for tissue specific deletion with Cre alone or 

combined with Gna12 deletion (20,21). 
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