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1. General Information  

FGF21 belongs to the FGF sub family of 

endocrine factors (21) that also includes FGF15 

(FGF19 in rodents) and FGF23.  These factors, 

unlike other FGFs, are characterized by the 

absence of the conventional FGF heparin-binding 

domain (6, 11) making them capable of diffusing 

away from the tissue of origin, and thus acting as 

hormones. Each of these factors plays an 

important role in cell metabolism.  Recent studies 

in humans, rodents and chimpanzees correlated 

increased circulating FGF21 to decreased obesity 

and increased sensitivity to insulin, thereby 

positively affecting cell metabolism (5, 10, 16).  In 

addition, FGF21 levels are elevated during 

nutrient deprivation and promote ketogenesis as 

an alternative energy source (2).  The initial link 

connecting FGF21 to metabolism was provided by 

Kharitonenkov et al (15) who demonstrated that 

FGF21 stimulated glucose uptake both in mouse 

and human adipocytes. Subsequent studies 

showed that FGF21 administration not only led to 

reduced plasma glucose, insulin, and lipid 

concentrations, but also improved hepatic and 

prepheral insulin sensitivity (4, 15, 31).  

FGF21 is highly expressed in liver, pancreas, and 

white adipose tissue (WAT) (13, 20, 21). FGF21 

executes its biological effects through cell-surface 

receptors composed of the classic FGF receptors, 

which are tyrosine kinases, in complex with β-

klotho (14, 17, 22, 24). Moreover, the tissues 

expressing FGF21 also abundantly express β-

klotho, further strengthening the possibility that 

FGF21 mediates its effects through β-klotho (12, 

22). However, some recent evidence suggests 

that FGF21 signals can be transduced in the 

absence of β-klotho in vivo, suggesting that an 

alternative receptor may exist for FGF21 (25). 

Fgf21 is upregulated by starvation and increased 

fat consumption, suggesting a complex role in 

metabolism.  In these situations, Fgf21 expression 

appears to be mediated mostly by nuclear 

receptors.  In WAT, peroxisome proliferator-

activated receptor (PPAR)  robustly activates 

Fgf21 expression (20, 29). PPAR , on the other 

hand, regulates Fgf21 expression in liver tissue 

(10).  This effect is direct as analysis of the Fgf21 

promoter reveals the presence of a PPAR binding 

site that, when mutated, causes the loss of Fgf21 

gene activation.  Various reports linked FGF21 

expression in liver to diverse regulatory factors, 

such as carbohydrate responsive element-binding 

protein (ChREBP) (9), the retinoic acid receptor-

related orphan receptor (ROR)  (30) and PPAR  

(2, 10, 19) and negative regulation by liver X 
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receptor (LXR) (23), circadian output protein, 

E4BP4 (26), and NFE2-related factor 2 (Nrf2) (3). 

The regulation of Fgf21 by various transcriptional 

regulators and the presence of regulatory 

elements in Fgf21 promoter imparts molecular 

flexibility to FGF21 expression not only during fed 

but also during fasting conditions (27). However, 

there is still limited knowledge on the factors that 

regulate FGF21 expression under normal 

conditions or how it is regulated in tissues other 

than liver and WAT.   

2. FGF21 in the Pancreas 

Fgf21 expression is robustly activated upon injury 

in the exocrine pancreas.  FGF21 appears to be 

an immediate response gene to pancreatic injury 

as expression is elevated within 15 minute of 

initiating injury in cerulein-induced pancreatitis, 

and increases 100-fold within 1 hour of initial 

cerulein injection.  Similar responses were 

observed in L-arginine models of injury (13).  

A recent report also observed an increased 

expression of Fgf21 within 1 hour along with other 

stress related molecules when mice are fed with 

protease inhibitor, which leads to increased 

endogenous CCK release and results in 

pancreatic growth (7). This suggests a potential 

role of FGF21 in adaptive growth of pancreas. 

Therefore, it may be that increases in Fgf21 

expression during pancreatitis are related to an 

adaptive role for acinar cells.  Interestingly, the 

target of FGF21 in these situations appears to be 

acinar cells.  Elevated levels of active ERK1/2 

were observed within minutes of stimulating 

primary acinar cells or AR42J acinar cells with 

purified FGF21 protein (13). 

The role of FGF21 in pancreatitis was further 

explored in genetically modified mouse lines that 

harbor a targeted deletion of the Fgf21 gene 

(Fgf21-/-) or that maintain high levels of circulating 

FGF21 (ApoE-FGF21Tg). The severity of 

cerulein-induced pancreatitis was inversely 

correlated to the amount of FGF21 expressed in 

the pancreas of these animals, based on the 

activation of pancreatic stellate cells and tissue 

fibrosis. In addition, the expression of Early 

growth response 1 (Egr1), an immediate response 

gene that is enhanced by cell stress is also 

inversely correlated to the presence of Fgf21.   

Targeted ablation of Egr1 reduces the severity of 

cerulein-induced pancreatitis.  Combined, these 

results suggest that FGF21 may act as defense 

molecule to protect pancreas against the 

pancreatic injury (13).  

3. Future questions 

While studies on the regulation of Fgf21 in liver 

and WAT have identified several important 

regulatory factors, our knowledge on how Fgf21 is 

regulated in pancreas remains elusive. PPAR , 

which is activated during pancreatitis (23) and 

regulates Fgf21 expression in adipocytes, lacks 

the ability to activate Fgf21 in primary acinar cells 

(13). Therefore future research is required to 

delineate factors and mechanisms that regulate 

Fgf21 expression in pancreas. Moreover, while it 

has been shown that FGF21 signals through β-

klotho and activates ERK1/2, the details of the 

underlying signaling pathways that limit pancreatic 

injury are yet to be unraveled.  A recent report 

linked an SNP in 3’UTR of Fgf21 to obesity (32). 

Owing to its important protective role during 

pancreatitis, it is imperative to scrutinize if there is 

any SNP in Fgf21 that might be associated with 

pancreatitis or other pancreatic anomalies. 

4. Tools to study FGF21 

a. cDNA clones 

 Mammalian expression vector for human Fgf21 is 

available in which Fgf21 cDNA was cloned in 

pcDNA3.1 vector (33). 

b. Antibodies 

Antibodies raised against FGF21 are 

commercially available from various suppliers. We 
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have used anti-FGF21 (R & D Systems, goat 

polyclonal) in our lab for western blotting. 

c. Recombinant FGF21 

In order to see the impact on cultured cells and in 

vivo administration, recombinant human FGF21 

has been purified in the Escherichia coli using a 

pET30a vector (15).  

d. Mouse lines 

here are at least 4 Fgf21 knockout and transgenic 

mouse lines available. Both Fgf21 knockout and 

transgenic mice are viable and fertile. Mouse line 

with targeted deletion of Fgf21 using pGTN29 

vector has been generated which replaced part of 

exon 1, all of exon 2 and 5’ region of exon 3 of 

Fgf21 with neomycin resistance gene (1) and is 

available from Eleftheria Maratos-Flier. Another 

Fgf21 knockout line has been described in which 

part of exon1 and all of exons 2 and 3 have been 

replaced with IRES-LacZ-polyA/PGK-neo 

cassette (8). This line is available from Nobuyuki 

Itoh. To specifically knockdown Fgf21 in mice, 

adenovirus vectors encoding shRNA against 

Fgf21 has also been described (2). 

Transgenic mouse line expressing human Fgf21 

cDNA under the control of apolipoprotein E 

(ApoE) promoter has also been described (15) 

and is available from Alexei Kharitonenkov. 

Another transgenic mouse line expressing mouse 

Fgf21 coding sequence under ApoE promoter has 

also been independently generated (10) and is 

available from Steven Kliewer.  

e. siRNA 

To specifically knockdown Fgf21 in cultured cells, 

siRNA sequences have been described (18). 

siRNAs are also available from various 

commercial suppliers. 
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