
This work is subject to a Creative Commons Attribution 3.0 license.  

 

 

MOLECULE PAGE 

Cholecystokinin Type 1 Receptor 
 

Aditya J. Desai, Laurence J. Miller 

 From the Department of Internal Medicine and the Department of Molecular Pharmacology 

and Experimental Therapeutics,  

Mayo Clinic, Scottsdale, AZ 85259  

e-mail: miller@mayo.edu 

 
Version 1.0, September 18, 2013 [DOI: pending]  
Gene Symbol: CCKAR 
 
1. General aspects of CCK receptor structure and function 
 

Cholecystokinin (CCK) exerts its 
physiological actions through the activation of two 
structurally-related class A G protein-coupled 
receptors (GPCRs) identified as type 1 CCK 
receptor (CCK1R) and type 2 CCK receptor 
(CCK2R) (also known as CCKAR and CCKBR, 
respectively, related to their prominent presence 
in “alimentary tract” and “brain”) (14, 47). These 
receptors have an extracellular amino-terminal tail 
domain, seven hydrophobic segments 
representing transmembrane helices that are 
connected by intracellular and extracellular loops 
to form a helical bundle domain, and an 
intracellular carboxyl-terminal tail. These 
receptors are highly homologous to each other 
and share 50% overall identity, with the 
transmembrane segment regions reaching 70% 
identity (47). The focus of this article is on the 
type 1 receptor, CCK1R. CCK peptides of  

different lengths with a common carboxyl-
terminal-amide sequence are produced from a 
single 115-residue preprohormone precursor. 
Mature peptides range from 58, 39, 33, to 8 
residues, with each containing a sulfated tyrosine 
residue seven residues from the carboxyl 
terminus (15, 47, 62). The CCK1R requires the 
carboxyl-terminal CCK heptapeptide-amide that 
includes a sulfated tyrosine for high affinity 
binding and full biological potency (47).  This is in 
contrast to the CCK2R that only requires the 
carboxyl-terminal tetrapeptide-amide that is 
shared by CCK and gastrin, and that is not 
influenced by the sulfation state of the tyrosine 
residue.   
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Figure 1.  Shown is a two-dimensional representation of the sequence of the class A GPCR, CCK1R, highlighting some 
typical features of this receptor. It has typical heptahelical topology, with the amino-terminal tail outside the cell and the 
carboxyl-terminal tail inside the cell.  Sites of glycosylation (Y) exist on ectodomains, while sites of phosphorylation are present 
intracellularly (grey ‘P’ circles).  There are two disulfide bonds (connecting the cysteines) within the amino-terminal tail and 
linking the top of TM3 with ECL2.  There is a site of palmitoylation within the carboxyl-terminal tail (two Cs anchored), helping 
to establish helix 8 adjacent to the inside of the plasma membrane. Also shown are typical signature sequences of the class A 
GPCR family (residues represented in green circles).  Also illustrated is a proposed docking model for the natural CCK peptide 
(oval) at the CCK1R, noting key receptor residues thought to be at the interface with this ligand.   

The CCK1R belongs to the class A group 
of GPCRs (47) having signature sequences 
typical of this family (Fig 1).  This includes E/DRY 
at the intracellular side of transmembrane 
segment three and NPxxY at the intracellular side 
of transmembrane segment seven. The cDNA 
encoding the CCK1R was first cloned from the rat 
pancreas by Wank et al. (80), and subsequently 
from the human gallbladder (77), with the 
chromosomal localization of this human receptor 
gene identified soon thereafter (9). The mature 
receptor is glycosylated and has a conserved 
disulfide bond between predicted extracellular 
loops one and two, and an additional intradomain 
disulfide bond within its amino terminus in the 
human receptor. This receptor is phosphorylated 
on serine and threonine residues in intracellular 
loop three and in the carboxyl-terminal tail in 

response to agonist stimulation. Relevant kinases 
that phosphorylate this receptor include protein 
kinase C and a staurosporine-insensitive G 
protein-coupled receptor kinase (19). A prominent 
function of receptor phosphorylation is to interfere 
with receptor coupling to G proteins, thereby 
desensitizating the signaling system (61). This 
receptor also has two cysteine residues 
representing sites of palmitoylation intracellularly 
beneath the predicted seventh transmembrane 
segment, which help to attach an eighth helical 
segment to the cytosolic face of the bilayer. The 
carboxyl-terminal tail has been shown to 
contribute determinants for ligand-induced 
internalization of the CCK1R (3), although 
phosphorylation of this region was found to not be 
required (61). 
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Agonist stimulation of CCK1R induces a 
conformational change in the receptor that results 
in receptor coupling with Gq, which leads to 
subsequent PLC activation and an increase in 
intracellular calcium levels from IP3-sensitive 
stores. Extensive studies have shown that the 
agonist-occupied Gq-coupled receptor state 
represents a high affinity state of this receptor (46, 
87, 89). The CCK1R has also been shown to be 
capable of coupling with Gs upon stimulation by 
high concentrations of CCK, thereby also resulting 
in increases in cAMP (70, 84, 85, 90).  Mutation of 
Asn82 in the first intracellular loop has been shown 
to disrupt this action (84). CCK1R has also been 
also shown to couple with G13 that results in 
activation of a RhoA pathway (44).  

A broad range of experimental approaches 
have been utilized to study the molecular basis of 
CCK binding to the CCK1R (refer to review (47) 
for details). While there has been some 
controversy regarding the interpretation of these 
studies, the most consistent pose of the bound 
peptide is along the extracellular surface of the 
membrane, with its carboxyl-terminal 
phenylalanine-amide adjacent to the area above 
transmembrane segment one (27, 49). A 
contrasting model has been proposed based 
largely on mutagenesis data in which the carboxyl 
terminus of the peptide dips into the bilayer within 
the helical bundle (29), however this interpretation 
is not compatible with several observations. Most 
recently, it has been shown that benzodiazepine 
ligands that occupy the intramembranous pocket 
proposed to be the location of the carboxyl 
terminus of CCK in this model are clearly 
allosteric ligands, able to bind in location that is 
distinct to that occupied by bound CCK (1, 4, 7, 
18). Mutagenesis approaches including 
segmental deletions and site-specific 
modifications, as well as chimeric receptor 
constructs for CCK1R, have been used to provide 
indirect insights into residues that contribute to 
ligand binding and signaling (42, 49, 69). 
Photoaffinity labeling is another approach that has 
been used, where modified high affinity, 

biologically active CCK probes with sites of 
covalent attachment throughout the CCK 
pharmacophore have provided direct evidence for 
the spatial approximation between residues within 
the bound CCK ligand and CCK1R (11-13). Here, 
too, the carboxyl-terminal residue of CCK was 
directly shown to be spatially approximated with a 
residue in the receptor amino terminus, above the 
top of transmembrane segment one. Additionally, 
fluorescence-based techniques exploring the 
microenvironment of receptor-docked CCK 
fluorescent analogues have also been used. Here 
a fluorescence indicator was incorporated at 
different positions of the CCK pharmacophore, 
and properties such as anisotropy, fluorescence 
lifetime, iodide quenching, and red-edge 
excitation shifts for each probe were determined, 
providing additional insights into the molecular 
basis of CCK binding to CCK1R  (24-27) (refer to 
(10) for summary of behavior of various 
fluorescent probes).  

Different non-natural ligands displaying 
high selectivity for the CCK receptor and potency 
have been developed (see reviews (30, 33)). A 
group of benzodiazepine compounds has been 
most extensively studied in regard to mechanism 
of binding to CCK1R (1, 4, 7, 18, 23). Studies 
incorporating receptor mutagenesis, photoaffinity 
labeling, and pharmacological manipulations have 
clearly shown that these ligands bind to a distinct 
allosteric site within the intramembranous helical 
bundle that is distinct from the orthosteric CCK 
peptide-binding site of CCK1R (4, 18, 22, 40). It 
has been shown that for the binding of the 
CCK1R-selective benzodiazepine-based 
antagonist, transmembrane segments six and 
seven (residues 6.51, 6.52, and 7.39 (2)*) are 
most critical (4). Also, recently an optimal model 
showing the binding of a benzodiazepine-based 
CCK1R agonist has been reported that 
demonstrates a distinct conformation of this 
binding pocket within the transmembrane helical 
bundle from that which accommodates the 
structurally-related antagonist. This study 
revealed a key role for Leu(7.39) that was 
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predicted to interact with the isopropyl group in 
the N1 position of the benzodiazepine that acts as 
a "trigger" for biological activity, whereas the role 
of this residue is currently less clear for chemically 
distinct agonists (23). 

CCK1R is also sensitive to the cholesterol 
composition of the membrane, in contrast to 
CCK2R that is not sensitive to this lipid. 
Membrane cholesterol depletion has been shown 
to reduce CCK binding affinity to CCK1R, as well 
as to decrease the biological response to this 
hormone at that receptor. Increased membrane 
cholesterol has been shown to be associated with 
an increase in CCK binding affinity; however, the 
biological responses to CCK under these 
conditions have been shown to be lower than 
normal as well. Some structural determinants for 
cholesterol sensitivity have been reported to be 
present within the third exon of CCK1R, which 
encodes most of transmembrane segment three 
and segment four, including one CRAC 
(cholesterol recognition/interaction amino acid 
consensus) motif and one CCM (cholesterol 
consensus) motif (10, 20, 21, 28, 59). 

CCK elicits a variety of physiological 
responses via the CCK1R, including a broad 
variety of important functions, such as stimulation 
of gallbladder contraction, stimulation of 
pancreatic exocrine secretion, relaxation of the 
sphincter of Oddi, inhibition of gastric acid 
secretion, delay of gastric emptying, and induction 
of post-cibal satiety (38, 68). The CCK1R is 
present in various parts of the gastrointestinal 
tract, such as gallbladder muscularis, neurons 
controlling pancreatic secretion, D cells in the 
gastric mucosa (68), muscularis propria of gastric 
antrum, fundus and pylorus (63), and vagal 
afferent neurons (refer to review (14) for details).  

The CCK1R gene is located on human 
chromosome 4p15.1-p15.2 and on mouse 
chromosome 5 (31, 65). Factors regulating levels 
of expression of this gene have not been 
extensively studied.   

CCK seems to be involved in pathologic 
states, such as irritable bowel syndrome, where 
CCK1R antagonists have been studied as 
potential treatments (67, 78). It has also been 
utilized extensively in experimental models of 
pancreatitis, where CCK hyperstimulation can 
cause this disorder (64). However, CCK1R 
antagonists have not been useful in the 
management of clinical pancreatitis. Reduced 
responsiveness of the CCK1R has also been 
shown to contribute to the pathogenesis of 
gallbladder diseases. Reduced gallbladder 
muscle contraction in response to CCK has been 
demonstrated in patients with cholesterol 
gallstones, as opposed to those with pigment 
gallstones. This defect in receptor function seems 
to be caused by the effect of increased membrane 
cholesterol in this condition (5, 6, 86, 88). A role of 
CCK1R in development of obesity has been 
proposed because of its importance in inducing 
satiety responses (41, 54). Polymorphisms of the 
CCK1R have also been associated with increased 
body fat content in some patients (16, 39, 72), 
however further studies will be necessary to 
validate a role for these polymorphisms in obesity. 
Polymorphisms in the CCK1R gene have also 
been described in some patients with panic 
disorder, Parkinson’s disease, and alcohol 
dependence, however this receptor is not 
believed to play a quantitatively important role in 
these problems (51, 52, 79). A rare clinical 
syndrome has been reported in which there is an 
abnormal trans-acting splicing factor that results 
in most of the CCK1R being misprocessed, with 
the third exon spliced out, and thereby yielding a 
non-functional receptor. This caused a profound 
reduction in expression levels of the receptor and 
was associated with obesity and premature 
gallstones (48).  CCK1R is shown to be present in 
certain types of cancers; although its role remains 
unclear. Immunohistochemical analyses have 
shown the presence of CCK1R in ductular 
adenocarcinoma cells from some pancreatic 
tumors (82). CCK1R has also been shown to be 

* According to the Ballesteros and Weinstein GPCR numbering system (2) , amino acid residues predicted to reside within a 
transmembrane (TM) segment are assigned two numbers (N1,N2), where N1 represents the TM segment number and N2 
represents sequential numbering relative to the most conserved residue in and the segment that is assigned 50.  
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heterogeneously expressed in some ileal carcinoids (75).  
 

2. Specific aspects of CCK receptor function 
in the pancreas 

The most widely recognized physiological 
role of CCK is stimulation of pancreatic enzyme 
secretion.  It has become clear, however, that the 
cellular basis for this may vary among species.  
The early and clearly definitive studies focused on 
the rodent pancreatic acinar cell.  There is 
convincing evidence for the expression of 
functional CCK1R on rodent acinar cells, as 
demonstrated by receptor mRNA expression, 
CCK ligand binding assays, and in vitro and in 
vivo functional secretory responses to 
physiological concentrations of CCK (66, 83). 

However, until recently, the expression 
and cellular distribution of CCK1R in human 
pancreas was less clear, and has been a subject 
of considerable debate. This is mainly due to the 
very low levels of expression of CCK1R mRNA in 
human pancreas compared with rodent pancreas 
(32, 81). Immunohistochemical studies have also 
failed to localize CCK1R to the human pancreas. 
An early report utilizing reverse-transcriptase PCR 
showed very low levels of expression of CCK1R 
mRNA in adult human pancreas, although 
Northern blotting approaches failed to detect the 
expression. The same study also reported the 
expression of CCK1R mRNA in human fetal (mid-
trimester) and infant (50 days old) pancreas (57). 
A more recent study utilizing a quantitative PCR 
technique on several samples from human 
pancreas found higher levels of CCK1R mRNA 
(copy number of 395), but did not establish the 
specific cell of origin of this signal (17). 

A study by Murphy et al. (56) more 
recently demonstrated the direct activation of 
isolated human pancreatic acinar cells in 
response to physiological concentrations of CCK, 
by measuring oscillatory increases in cytosolic 

calcium concentrations and subsequent enzyme 
secretion in vitro. This is the most convincing 
evidence supporting the hypothesis that 
pancreatic secretion can be mediated through 
direct action of CCK on pancreatic acinar cells, as 
well as its likely stimulation of intrapancreatic 
nerves (56).  

In contrast, there have been many reports 
demonstrating the indirect action of CCK to 
stimulate pancreatic enzyme secretion. Studies in 
human and rodents have showed that cholinergic 
vagal activation is an important pathway for CCK 
to stimulate pancreatic enzyme secretion (45). 
Substantial evidence also supports the presence 
of this receptor on intrapancreatic neurons and on 
abdominal branches of the vagus nerve in several 
species (58). Indeed, CCK1R on vagal afferent 
fibres has been shown in vivo to mediate 
pancreatic enzyme secretion (45).  

In addition to effects on secretion, CCK 
can exert trophic and proliferative effects on the 
pancreas mediated by the CCK1R. The essential 
contribution of CCK1R for pancreatic regeneration 
following pancreatectomy or pancreatic duct 
ligation and the importance of CCK for normal 
pancreatic growth has also been reported in rats 
(8, 50, 53, 60). Conversely, studies in mice and 
guinea pigs deficient in CCK peptide and CCK1R 
have demonstrated that CCK is not a required 
growth factor for the murine pancreas (43, 73).  

In endocrine pancreas, CCK stimulates 
the release of insulin (34, 35), and CCK1R has 
been detected in human insulin- and glucagon-
secreting cells (55). In human gallbladder, CCK1R 
expression has been directly demonstrated on 
smooth muscle cells, where it is responsible for 
mediating gallbladder contraction (76). 
 
 

 
 

 

 

 



6 

 

3. Tools for study 

a. Molecular constructs 

Mouse, rat and human wild type CCK1R 
cDNA clones can be purchased from 
GeneCopoeia (www.genecopoeia.com). Human 
CCK1R cDNA clone in pcDNA3.1+ vector and N-
terminal HA tagged CCK1R in pcDNA3.1+ vector 
are available from UMR cDNA Resource Center, 
Missouri University of Science and Technology 
(www.cdna.org). Human CCK1R cDNA in 
lentiviral vector pReceiver-Lv105 is available from 
GeneCopoeia. 

b. Antibodies 

Polyclonal antibodies raised against 
peptide epitopes within the amino-terminal and 
carboxyl-terminal tail regions of the CCK1R are 
available from many commercial sources, such as 
Santa Cruz Biotechnology (sc 16172, sc 16173, 
sc 33220), Pierce Antibodies (Thermo Scientific) 
(PA3-116, PA5-32692, PA5-32693, PA1-36144, 
PA1-31121), Novus Biologicals (NBP1-00743, 
NB100-2805, NB100-60552, NLS3291), Abcam 
(ab77269, ab28627, ab140762, ab75153, 
ab140805, ab115287, ab14441), Acris Antibodies 
(AP01210PU-N, AP02079SU-N, AP02079SU-S, 
AP02080SU-N, AP02080SU-S, AP02080SU-S, 
AP16373PU-N, AP16597PU-N, AP20083PU-N, 
AP20084PU-N, BP2199, EUD3801, SP4663P), 
LifeSpan BioSciences (LS-A3291, LS-A3293, LS-
A820, LS-A822, LS-C120637, LS-C54624, LS-
C22102, LS-C177096, LS-C157607, LS-C54623, 
LS-C151628, LS-C151629, LS-C128134, LS-
C128132, LS-C128131,  LS-C89020, LS-
C35919), and Merck Millipore (AB9514).  

c. Antagonists 

Several peptide and non-peptidyl antagonists 
of the CCK1R have been developed for the 
treatment of a variety of gastrointestinal disorders. 
These compounds have been successfully used 
for in vitro and in vivo studies. The CCK1R 
antagonists that are commercially available 
include the following: devazepide (L-364,718) 
(pIC50 9.7, Tocris Bioscience, cat no. 2304; 
Sigma-Aldrich, cat no. D3821; Santa Cruz 
Biotechnology. cat no. sc-203562), SR 27897 
(pIC50 8.3, Tocris Bioscience, cat no. 2190), 
lorglumide (pIC50 6.7-8.2, Sigma Aldrich, cat no. 
L109), loxiglumide (pIC50 6.5, Sigma Aldrich, cat 
no. SML0130), and CR 1409 (pIC50 7.86, Phoenix 
Pharmaceuticals, cat no. 069-08).  

d. Transgenic mice 

A specific strain of rat known as OLETF rats 
(Otsuka Long Evans Tokushima Fatty) which 
naturally lacks CCK1R expression was 
characterized at the Tokushima Research 
Institute (Otsuka Pharmaceutical, Tokushima, 
Japan) (36, 37, 74). A CCK1R-/- mouse lacking 
exon 3 which encodes for a portion of the third 
transmembrane segment and the second 
intracellular loop including the “ERY” motif was 
developed by Kopin et al. (41). This animal has 
been shown to exhibit reduced inhibition of food 
intake, but normal body weight. Suzuki et al. have 
generated a CCK1R-/- mouse lacking exon 2 (71), 
which exhibits decreased biliary and pancreatic 
secretion.
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