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1. General Function 

Calcineurin (Cn) is a Ca2+/calmodulin (CaM)-

dependent serine/threonine phosphatase first 

identified in extracts of mammalian brain (52, 70). 

Its name was further derived from its ability to 

bind Ca2+. Its importance has been documented in 

a number of physiologic and pathologic conditions 

including neuronal and muscle development, 

lymphocyte activation, cardiac hypertrophy, 

switching of skeletal muscle fiber type, and 

expression of ion channels. Cn (also known as 

PP2B) is part of a family of type 2 protein 

phosphatases that includes PP2A and PP2C. 

They are classified according to their dependence 

on certain divalent metal ions for phosphatase 

activity and Cn is uniquely dependent upon Ca2+. 

PP2A and PP1, but not Cn, are inhibited by the 

exogenously administered phosphatase inhibitors 

okadaic acid, microcystin, and calyculin, as well 

as the endogenous inhibitors inhibitor-1, DARPP-

32 (dopamine- and cAMP-regulated 

phosphoprotein of 32 kDa), and inhibitor-2, 

whereas Cn is specifically inhibited by the 

immunosuppressant drugs FK506 (tacrolimus) 

and cyclosporine A (CsA)(33). 

There are several very good comprehensive 

reviews on Cn (4, 52), more recent brief updates 

(3, 28, 33), information on Cn inhibitors (31, 43), 

and disease or organ/tissue-specific reviews 

relating to Cn in the neurosciences (22), muscle 

(50), and islet cells (30). 

 

Cn isoforms, structure, and function 

Cn consists of two subunits, CnA and CnB, which 

form a heterodimer in order to conduct 

phosphatase activity. CnA (Fig. 1) contains the 

catalytic domain, which is homologous to other 

serine/threonine protein phosphatases (4). A 

dinuclear metal center composed of one iron and 

one zinc molecule lies next to a β sandwich on the 

active site (Fig. 2). CnA also has 3 regulatory 

domains: a binding domain for its partner subunit 

CnB, a CaM binding domain, and an 

autoinhibitory domain. CnB, the regulatory 

http://www.ncbi.nlm.nih.gov/gene/5530
http://www.ncbi.nlm.nih.gov/gene/5532
http://www.ncbi.nlm.nih.gov/gene/5533
http://www.ncbi.nlm.nih.gov/gene/5534
http://www.ncbi.nlm.nih.gov/gene/5535
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subunit, contains 4 Ca2+-binding EF hand motifs 

that regulate through a conformational change the 

catalytic function of Cn. CnB binding to CnA may 

also facilitate proper folding of the active enzyme 

(15). CnB resembles CaM in that both bind to an 

extended  helix on their respective CnA 

domains. The primary sequence of the Cn subunit 

is highly conserved. CnA and CnB are tightly 

bound (kd ≤ 10-13 M) even in the total absence of 

Ca2+. Two short  helices form the inhibitory 

domain and block the catalytic center under basal 

low Ca2+ conditions. The CaM binding domain is 

flexible. Binding of CaM along with Ca2+ binding to 

CnB induces displacement of the inhibitory 

domain, thus exposing the catalytic domain.

 

 
 

Fig. 1. Primary sequence and domain structure of CnA. The amino acid sequence represents rat CnA. Note 
the regulatory domains that bind CnB and CaM as well as the autoinhibitory domain (AI). Modified from(52). 

 

  

Fig. 2. Cn structure. (left panel) Ribbon diagram of CnA (yellow) and CnB (blue). The former has several 
disordered regions (DRs), including a long stretch of 95 residues (red); the CaM binding α helix is contained within 
the DR. (right panel) X-ray crystallography of CaM (blue) demonstrates binding to the α-helix of CnA (now colored 
yellow). Source: http://www.pondr.com/pondr-tut1.html 
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Cn isoforms and tissue distribution 

CnA has 3 isoforms CnA, CnA, and CnA. CnB 

has two isoforms CnB1 and CnB2. CnA also has 

two splice variants which differ in their C-terminal 

domain (23). CnA and CnA appear to interact 

interchangeably with CnB1. Cn is highly enriched 

in brain; it constitutes 1% of total protein content 

and there are 20-30 fold greater amounts there 

than in other tissues. However, Cn is ubiquitously 

expressed and has differential isoform 

distribution. CnA and CnB2 are primarily found in 

testis. There is greater abundance of CnA over 

CnA in brain and heart, but the reverse is true in 

spleen, thymus, and lymphocytes. CnA is 

considered a stress-responsive isoform (8, 64). 

The subcellular distribution of Cn is also distinct in 

certain cell types. Although Cn is localized to the 

cytoplasm in most systems, in spermatids, for 

example, it is localized to the nucleus; levels are 

most abundant during the initial stage of nuclear 

elongation with almost no signal present in the 

cytoplasm (45). In many systems, Cn co-

translocates with NFAT (nuclear factor of 

activated T cells) to the nucleus upon activation 

by Ca2+ (58). In chicken forebrain, Cn is highly 

enriched in cytoplasmic, microsomal, and 

synaptosomal fractions (1). Cn is also co-localized 

with the cytoskeleton in cultured neurons(16) and 

the T-tubules of ventricular myocytes (54). The 

molecular mechanism of this targeting is not fully 

clear. However, calsarcin-1 and -2 tether Cn to -

actinin and may couple Cn activity with muscle 

contraction (17). 

 

Regulation of Cn 

Several factors regulate Cn. The most potent 

activators are Ca2+ and CaM. As mentioned 

earlier, even at low cytosolic Ca2+ concentrations, 

CnA is tightly bound to CnB (38). However, a 

sustained rise in Ca2+ causes the dual recruitment 

of CaM to CnA and the binding of Ca2+ to CnB. 

This results in a conformational change in CnA 

that forces its autoinhibitory domain to dissociate 

from its catalytic groove, thereby permitting Cn 

activity. Of the two initiating components, it is 

thought that CaM is the critical activator. Cn is 

also reversibly inactivated by oxidation of its Fe2+ 

molecule (71). In fact, there is some thought that 

a Ca2+/CaM-induced conformational change in Cn 

exposes the Fe2+ to oxidation, thus providing 

negative feedback for Cn activation. 

 

A number of endogenous Cn inhibitors have been 

identified. They include AKAP79 (A-kinase 

anchoring protein of 79 kDa), which as its name 

implies also anchors PKA with Cn (13). Another 

protein with this dual anchoring and inhibitory 

action on Cn in cardiac and skeletal muscle is 

calsarcin (17). A family of proteins called 

modulatory Cn interacting proteins (MCIPs) 

serves as feedback inhibitors of Cn (51). In 

humans, its gene was initially identified as DSCR1 

(Downs’s syndrome critical region 1) (61). A 

recent consensus was reached to call these 

proteins regulators of Cn (RCANs) (11). They are 

upregulated by Cn-mediated activation of the 

transcription factor NFAT. They can inhibit Cn and 

interestingly also directly inhibit NFAT through 

binding a highly conserved ISPPxSPP motif found 

on both proteins. Other inhibitors include Cn 

homologous protein (CHP) and Cain/Cabin1 (35). 

The latter is a 240 kDa nuclear protein that 

inhibits Cn in a Ca2+- and PKC-dependent manner 

likely by binding to the same site as FK506-FKBP. 

Other factors contributing to Cn activation include 

polyunsaturated fatty acids (32). 

 

Cn targets 

Cn has a number of phospho-protein targets 

identified. The best known is NFAT, which resides 

in the cytoplasm during basal conditions, but 

translocates to the nucleus upon 

dephosphorylation by Cn (41). Other targets of Cn 

include CRHSP-24 (Ca2+-regulated heat stable 

protein of 24kDa) (21,55), DARPP-32 (48) and 

inhibitor-1 (46) (inhibitor of protein phosphatase 

1), the regulatory RII subunit of cAMP dependent 

protein kinase (6), Bcl2 family member BAD (69), 

a CaM binding protein neuromodulin (40), NO 

synthase (12), adenylate cyclase (2), HSP70 (36), 

endocytic component GTPase dynamin1 (39), 
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transcription factors MEF2 (76) and Elk-1 (62), 

Gap43 (7), and microtubule-associated proteins 

Map-2, tau, and tubulin (18). Cn may also provide 

a feedback mechanism for maintaining cellular 

Ca2+ homeostasis by regulating the expression of 

several ion channels channels (9). 

 

Cn in physiology and disease 

As mentioned earlier, Cn is highly enriched in 

neurons, but it is ubiquitously expressed in all 

tissues and cells. In the brain, it functions to 

activate a series of phosphatases by 

dephosphorylating the endogenous inhibitors of 

PP-1: inhibitor-1 and DARPP-32. Cn thus 

intricately regulates synaptic plasticity and long 

term memory (42, 77). Cn also regulates synaptic 

vesicle endocytosis by dephosphorylating the 

dephosphins (10). In T cells, sustained cytosolic 

Ca2+ release leads to Cn/NFAT activation and the 

induction of T cell activating genes, notably 

interleukin-2 (41). The reason why the Cn 

inhibitors FK506 and CsA are such effective 

chronic immunosuppressive drugs is this 

blockade of T cell Cn. In heart, the Cn/NFAT 

pathway may protect against dilated 

cardiomyopathy (26). However, it plays a 

pathologic role in cardiac hypertrophy (44, 63, 

74), through either activation of NFAT3 (along 

with GATA4), co-activation of NFAT and MEF2, or 

PKC activation. In skeletal muscle, Cn regulates, 

again through NFAT3 and MEF2, switching of 

muscle fiber subtype (50, 76). In islet cells 

Cn/NFAT regulates beta cell growth (27, 30) and 

survival (5, 60). 

2. Cn in the Exocrine Pancreas 

Investigations in the exocrine pancreas relating to 

Cn have focused on the acinar cell. Cn was 

reported to inhibit acinar cell exocytosis of 

pancreatic enzymes (72). Initial work in both 

pancreatic lobules as well as dispersed acini 

demonstrated that CsA and FK506 each reduced 

caerulein and carbachol-stimulated amylase 

secretion (14, 72). However, later studies could 

reproduce only a modest reduction using FK506 

(20, 29). Further work showed that Cn is required 

for translational control of acinar cell protein 

synthesis. In isolated acinar cells stimulated with 

either CCK, bombesin, or carbachol, FK506 

reduced methionine incorporation into protein. 

FK506 modulated factors in the translation 

machinery: it reduced the phosphorylation of 

mRNA cap binding protein eukaryotic initiation 

factor (eIF) 4E binding protein, reduced the 

formation of the eIF4F complex, and increased 

the phosphorylation of eukaryotic elongation 

factor 2 (53). In a series of elegant studies using 

an experimental model of adaptive growth in 

which mice were fed the soybean trypsin inhibitor 

camostat in order to stimulate endogenous CCK 

release, pancreatic growth was shown to be 

dependent upon Cn (25, 65). This was initially 

demonstrated using CsA and FK506 (14, 66). Cn 

pathways could explain several important aspects 

of pancreatic growth, such as c-Jun NH2-terminal 

kinase activation (65). In a subsequent study, 

overexpression of the endogenous Cn inhibitor 

Rcan1 selectively within acinar cells also led to 

reduced adaptive growth of the pancreas (24). 

Because Rcan1 is a transcriptional target of 

NFAT, validated in the acinar cell by chromatin 

immunoprecipitation, it was suggested that Cn 

modulates growth through NFAT activation (24). 

Indeed, using an NFAT-luciferase reporter, CCK 

activated NFAT signaling (25). Cn was also 

shown to mediate experimental pancreatitis (29, 

56). FK506 administration in vivo attenuated the 

severity of pancreatitis induced by 

hyperstimulation with the CCK analog caerulein. 

Further, the Cn inhibitor FK506 and Cn inhibitory 

peptide (CiP) reduced pathologic intra-acinar 

protease activation, an early marker of pancreatic 

injury. Although NFAT pathways have primarily 

been investigated, other substrates that mediate 

non-transcriptional events may play a role in the 

exocrine pancreas. Notably, the Cn substrate 

CRHSP-24 was first identified in the exocrine 

pancreas (21, 37). 
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3. Tools for Study of Cn 

a. Molecular constructs 

 

Several Cn clones and adenoviral constructs have 

been created. A major tool employed to identify a 

role for Cn in a cellular process has been the 

overexpression of a CaM-independent derivative 

of CnAα residues (1-392), in effect producing a 

constitutively active Cn (ΔCnA)(49). A host of 

plasmids are available for purchase at Addgene 

(www.addgene.org). Adenoviral vectors are 

available from Seven Hills Bioreagents.  siRNA for 

Cn is available through Ambion. 

 

b. Antibodies 

 

In our experience, commercially available Cn 

antibodies are not particularly specific for their 

labeled Cn isoforms, particularly the CnAβ 

antibody. However, they are available from Santa 

Cruz, Upstate Biotech, BD Transduction Labs, 

and Chemicon. Most of them, however, can be 

used for immunofluorescence in addition to 

western blotting. 

 

c. Transgenic mice 

 

CnA knockout mice were made by Dr. Jeff 

Molkentin (8). They live to adulthood, breed well, 

and have no gross phenotypic defects. CnA 

knockout mice were made by Dr. Jon Seidman 

(78). CnB1 knockout mice do not live beyond the 

embryonic period due to fatal defects in vascular 

patterning. However, floxed CnB1 mice were 

made by Dr. Gerald Crabtree (47). Floxed CnA 

mice are also available. To our knowledge, CnA-

/- or CnB2-/- are not available. An NFAT 

luciferase reporter mice has been used to monitor 

Cn activation (73). 

 

d. Cn Activity 

 

Cn activity is primarily measured in vitro using a 19 

residue synthetic peptide corresponding to residues 

81-99 of the RII subunit of cAMP-dependent protein 

kinase(6). As an alternative Biomol Labs carries a 

colorimetric assay kit. In vivo measurements can be 

performed by monitoring NFAT nuclear 

translocation. In pancreas the dephosphorylation of 

CRSP-24 has also been used.  A transgenic mouse 

that expresses an NFAT luciferase reporter was 

made by Dr. Jeff Molkentin(73). 

 

e. Pharmacologic inhibitors 

 

The two prototypic Cn inhibitors, FK506 and CsA, 

form a complex with FK506 binding protein 

(FKBP12) and cyclophilin, respectively (43). The 

complex then binds Cn and blocks access of 

substrates to its catalytic site. The junction between 

CnB and CnA has been identified by crystallography 

to be the binding site for FK506 (Fig. 3). The two 

inhibitors are widely used in clinical practice as 

immunosuppressants after organ transplantation or 

for the treatment of autoimmune disorders because 

they diminish Cn-dependent T cell activation. 

Several novel variations of these inhibitors are in 

testing (59). FK506 is more specific than CsA. The 

latter can bind cyclophilin D and thereby inhibit the 

mitochondrial permeability transition pore (75). It 

should also be noted that both FK506 and CsA 

have worrisome side effects with prolonged, chronic 

use, such as hypertension and neurotoxicity(68). 

 

CiP is a short peptide that mimics the auto-inhibitory 

domain of Cn. A cell permeant form of CiP, made by 

covalently attaching an arginine tail to the peptide is 

available through Calbiochem (67). As a negative 

control, however, it will be important to synthesize a 

scrambled peptide of equal length that also has an 

arginine tail. 

 

Phosphatase inhibitors that do not inhibit Cn can be 

used as negative controls to determine the selectivity 

of an effect for Cn. In particular, the serine/threonine 

phosphatases PP1 and PP2A can be inhibited by 

okadaic acid (IC50 20 nM and 0.2 nM, respectively), 

calyculin-A (IC50 1 nM for both), and microcystin-LR 

(IC50 0.1 nM for both) (57). The former two inhibitors 

have been used in pancreatic acinar cells (55), and 

none inhibit Cn (PP2B) at the noted concentrations. 

http://www.addgene.org/
http://www.sevenhillsbioreagents.com/
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Fig. 3. Ribbon diagram of truncated Cn complexed with FK506-FKBP12. CnA is shown in red and CnB in 
purple, with myristic acid covalently linked to the N-terminal glycine shown in pink. Iron and zinc are contained 
within the active site of CnA (yellow and green spheres, respectively), and the bound phosphate is shown in 
purple. Four molecules of Ca

2+
 on their respective CnB binding sites are shown as pink spheres. The FK506 

(yellow)-FKBP12 (green) complex blocks entry of Cn substrates to the active site on CnA. (Protein Data Bank 
code 1TCO(19)). Modified from(34). 
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