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1. General Functioning of the mTOR 
Pathway 

The mTOR signaling pathway is a nutrient 
sensing mechanism coupled to mTOR, the 
mammalian or mechanistic target of rapamycin 
(15, 26, 39). mTOR is the target of the anti-fungal 
metabolite rapamycin. It is named after the island 
Rapa Nui (Easter Island) from whose soil it was 
first isolated and has broad antiproliferative and 
immunosuppresive properties (38). Genetic 
screens in the early 1990’s in yeast identified two 
genes TOR1 and TOR2 that mediated the effects 
of rapamycin. Biochemical studies then led to the 
identification of the mammalian form (8, 32). 
mTOR is an atypical protein kinase related to 
phosphoinositide 3- kinase family although it is a 
Ser/Thr targeted kinase and not a lipid kinase. It is 
a large protein of about 2,500 amino acids with 
multiple domains including a C terminal kinase 
domain and a FKBP-rapamycin binding (FRB) 
domain. 
 
mTOR is a component of two complexes, TORC1 
and TORC2; each contains other proteins, some 
of which are shared. However, TORC1 uniquely 
contains the scaffolding protein Raptor (regulatory 
associated protein of mammalian target of 
rapamycin) (18) and PRAS40 (proline rich Akt 
substrate of 40 kDa) (45), whereas TORC2 
contains, among other components, Rictor 
(rapamycin-insensitive companion of mTOR) (26). 
Both Raptor and PRAS40 are inhibitory proteins; 
phosphorylation blocks this inhibition. PRAS40 
represents an essential component for insulin 

activation of TORC1. Raptor is an essential 
component and its genetic deletion leads to loss 
of TORC1 activity (3).  
 
Much less is known as to the functions of TORC2. 
It is a regulator of the actin cytoskeleton in both 
yeast and mammalian cells (49). More recent 
studies have shown it to be active in 
phosphorylating various protein kinases especially 
Akt. 
 
Only TORC1 is acutely sensitive to rapamycin 
which inhibits some, but not all, of TORC1 
functions (30). This inhibition requires FKBP-12 
(FK506 binding protein of 12 kDa). Much is known 
about the function of TORC1 which mediates the 
growth promoting effects including protein 
synthesis, lipid synthesis, inhibition of autophagy, 
ribosome and lysosome biogenesis, and energy 
metabolism. The effects on protein synthesis are 
mediated in part by activation of S6K1 (S6 
Kinase-1) which phosphorylates ribosomal protein 
S6 and also activates initiation and elongation 
translation factors, the latter through elongation 
factor 2 kinase (30). In addition, TORC1 
phosphorylates 4E-BP1, a binding protein which, 
upon phosphorylation, releases the initiation 
factor eIF4E which acts as a mRNA cap binding 
protein (46). The overall rate of protein synthesis 
also depends on the number of ribosomes, and 
TORC1 also enhances the synthesis of ribosomal 
proteins and RNA (30). TORC1 promotes lipid 
synthesis by activating SREBP (sterol responsive 
element binding protein) (38). 
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The action of TORC1 to inhibit autophagy is 
mediated by phosphorylation of ULK1 (unc-51 like 
autophagy activating Kinase-1) and Atg13 
(autophagy related 13) which blocks the formation 
of the phagosome (40). Recently, TORC1 has 

also been shown to regulate the abundance of 
proteasomes; when TORC1 is inhibited, the ability 
of proteasomes to degrade proteins increases 
(31). 
 

Figure 1. General and simplified diagram of mTORC1 pathway set in pancreatic acinar cell, where the 
pathway is regulated by CCK and insulin. Red arrows indicate activation; Black arrows indicate inhibition; 
Green arrow indicates translocation. Biological processes regulated by mTORC1 are shown at the bottom of 
the figure, along with the key proteins mediating the effect. 
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A variety of upstream signals regulate TORC1 
including growth factors (and some hormones that 
stimulate growth of their target cells), amino acids, 
oxygen levels, and glucose (Figure 1). Growth 
factors and insulin reflect the fed state of the 
organism and promote anabolic processes. 
Binding of insulin to its receptor activates PI3K 
and Akt that are upstream of TORC1, Akt 
phosphorylates and inhibits TSC1/2 the 
tuberosclerosus complex which acts as a tumor 
suppressor by acting as a GAP for Rheb (Ras 
homolog enriched in brain), a GTPase which is 
one of the major activators of TORC1. Akt also 
phosphorylates PRAS40 and thereby relieves its 
inhibition of mTOR in TORC1. TORC1 limits its 
own activation by the negative feedback of S6K1 
on the early steps in PI3K activation especially by 
insulin. 
 
Another major signal regulating TORC1 activity is 
the abundance of amino acids which tells the 
organism to undergo anabolic activity (1, 22). 
Conversely the absence of adequate amino acids 
is a stress which leads to the shutting down of 
biosynthetic pathways and the induction of 
autophagy. The major amino acids sensed are the 
branched chain amino acids, especially leucine, 
as well as arginine and glutamine. Amino acid 
sensing involves recruitment of TORC1 from 
cytoplasm to lysosomes where it interacts with 
proteins including the Rag GTPases (23), a 
protein complex termed the ragulator (33), amino 
acid transporters (17) and the lysosomal vacuolar 
ATPase (12). In the presence of amino acids, 
Rheb which is also localized on the lysosome, is 
activated and in turn activates TORC1. 
Furthermore, amino acids are necessary for 
almost all other mechanisms activating TORC1. 
Low oxygen or low glucose levels prevent TORC1 
signaling through AMP Kinase and reduce the 
activity of the proteins REDD and BMIP3 (40, 48). 
DNA damage also inhibits TORC1. As a result of 
this network of interactions, growth and other 
anabolic activities can only take place in the 
presence of a supporting milieu. 
 

2. mTOR Signaling in Pancreatic 
Cells 

mTOR signaling in pancreas was first recognized 
and is most commonly followed through 
phosphorylation of the pathway’s downstream 
mediators, ribosomal protein S6 and 4E-BP1. 
Phosphospecific antibodies are widely available 
for S6 and its upstream kinase, S6K1 which is 
activated by TORC1. 4E-BP1 resolves into 
multiple bands on Western blots with the higher 
band being most highly phosphorylated. Such 
measurements showed that in isolated rodent 
pancreatic acini CCK and similarly acting 
secretagogues (bombesin, carbachol) activated 
S6K1 (5), increased phosphorylation of S6, 4E-
BP1 (5, 6, 42), and EF2K (elongation factor 1 
Kinase (37) and that these effects were blocked 
by rapamycin, the TORC1 inhibitor. Moreover, 
rapamycin blocked the increase in protein 
synthesis stimulated by CCK in isolated acini. 
These studies showed that the primary cell type 
involved in the exocrine pancreas is the acinar 
cell and this has been reinforced in vivo where 
CCK injection increased phosphorylation of S6 
and 4E-BP1 as well as the phosphorylation of 
eIF4E and the formation of the eIF4F initiation 
complex (7). Elevating endogenous CCK by 
feeding the trypsin inhibitor camostat (10) or 
diverting bile pancreatic juice (19) also led to 
similar effects. As discussed earlier, amino acids 
activate the TORC1 pathway and leucine and 
other branched chain amino acids activate protein 
synthesis and the TORC1 pathway both in 
pancreas in vivo and in isolated pancreatic acini 
(20, 36, 44). S6 and 4E-BP1 signaling in the 
pancreas are also affected by insulin and diabetes 
(29, 34, 43). TORC1 signaling is not required for 
secretion of digestive enzymes (5) but is required 
for protein synthesis and adaptive growth (6, 10, 
11). 
 
In addition to studies of acinar cells, the TORC 1 
pathway appears to play a role in activated 
pancreatic stellate cells where it mediates effects 
of insulin to enhance collagen synthesis and 
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fibrosis (47). These in vitro effects of insulin were 
blocked by TOR inhibitors rapamycin and 
KU63794. TORC1 also plays a role in the 
endocrine pancreas where it is involved in islet 
development, beta cell growth and insulin 
processing and secretion (2, 4, 14, 27, 41). 
 
The importance of the TORC1 pathway in the 
exocrine pancreatic response to feeding is shown 
by the activation of the downstream components 
when mice fasted overnight are refed (35). In this 
study, protein synthesis was also increased with 
feeding without a change in mRNA levels for 
digestive enzymes, indicating the importance of 
translational control primarily by the TORC1 
pathway in synthesis of new digestive enzymes 
after secretion. Similar effects have also been 
seen in neonatal pigs (16). TORC1 was also 
shown to play a role in the hypertrophic response 
to feeding a high protein diet and this was 
independent of CCK (11). Conversely, pancreatic 
atrophy was seen in response to a loss of TORC1 
signaling when mice were fed a protein free diet 
(9). These in vivo responses involve multiple 
hormones including CCK and insulin and nutrients 
acting directly, particularly amino acids. 
 
3. mTOR Signaling and Pancreatic 
Disease 

mTOR signaling has been implicated in a number 
of disease states with altered growth and 
metabolism including cancer and diabetes as well 
as aging where the life extending effect of low 
calorie diets is believed mediated by reduced 

TORC1 signaling (49). TORC1 activity is 
increased in many pancreatic ductal 
adenocarcinomas (PDAC) in part due to 
mutations in upstream regulatory molecules 
including PTEN, AKT and TSC1/2. Most PDAC 
cancers have RAS mutations leading to activation 
of the MEK/ERK pathway which can inactivate 
TSC1/2 and thereby activate TORC1. Rapamycin 
analogs have been considered as potential 
therapeutic agents for pancreatic and other 
cancers. However, these inhibitors have not 
shown significant effects in single agent clinical 
trials, though individual patients have shown 
responses (21). Currently attention has focused 
on dual agent therapy as well as identifying 
patients with specific patterns of gene activation 
that may be more responsive. In this context, 
genetically modified mice with Ras mutation and 
PTEN deficiency show sensitivity to TORC1 
inhibition in contrast to those with Ras and p53 
mutations which are not sensitive (28). Another 
study using a mouse model of decreased TSC1 
by haploid sufficiency showed enhanced mTOR 
signaling and tumorigenesis could be blocked with 
dual inhibition of mTOR and MEK (25). 
 
When TSC1 was completely ablated in the 
embryonic pancreas, mice developed pancreatic 
acinar adenocarcinoma superimposed on atrophy 
of the normal pancreas (13, 24). This is a rare 
form of pancreatic carcinoma in humans with the 
tumor cells having acinar characteristics and 
expressing amylase. It is generally slower growing 
and less malignant than pancreatic ductal 
adenocarcinoma. 
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