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1. Introduction 
In 1938, Dr. Dorothy Anderson published a paper 
describing the characteristic of Cystic Fibrosis 
(CF) in the pancreas; the term of “cystic fibrosis” 
refers to the autopsy findings of fibrosis with cyst 
in the pancreas of children who died early in life 
with this disease. In 1949 Anderson also 
discovered that CF is a genetic condition.  More 
recently this was described to be caused by 
mutations in the CF transmembrane conductance 
regulator (CFTR) (83). Other than the pancreas, 
CF also affects the lungs, liver, kidneys, male 
reproductive and gastrointestinal tract (4, 82). The 
disease leads to shortened life expectancy most 
often due to respiratory failure resulting from 
airway obstruction, bacterial infections and 
inflammation (9, 98).  
 
CFTR, a member of the ATP-binding cassette 
(ABC) transporter protein family, is the cAMP-
dependent Cl channel at the apical membranes of 
most epithelial cells (75). Mutations of CFTR gene 
cause CF, which is the most common fatal 
autosomal recessive disorder with a disease 
frequency of 1 in 2,500 live births and a carrier 
rate of approximately 5% in Caucasian population 
(33, 114). The disease is characterized by a 
malfunction of exocrine tissues due to 
dysregulation of an epithelial chloride (Cl) 
channel. The major clinical features include 
chronic pulmonary disease, pancreatic exocrine 
insufficiency, intestinal disease (especially 
constipation) and an increase in the concentration 
of sweat chloride (87).  In the lungs, airways 
become colonized with bacteria and repeated 

pulmonary infections ensue. The recurrent 
infections and inflammation result in submucosal 
gland hypertrophy and excessive mucus 
secretion. The impaired mucociliary clearance 
and plugging of small airways cause progressive 
bronchiectasis and ultimately lead to respiratory 
failure (100). Following the lung, the pancreas is 
the most affected organ in CF. It has been 
documented that most of the CF patients have 
pancreatic exocrine insufficiency, which leads to 
maldigestion and potentially malnutrition (117). In 
this context, malabsorption of fat and fat-soluble 
vitamins are the most common nutritional deficient 
seen in this disease.   
 
In this chapter, we will focus on how decreased 
CFTR function leads to protein plugging of the 
ducts and pancreatic atrophy. We will also shed 
light on the latest animal models to better 
understand the CF pancreatic disease and its 
relationship to chronic pulmonary disease and 
intestinal disease. 
 
2. CF Animal Models 
Mice, rats, pigs, and ferrets for CF 
research 
Since the discovery of the CF gene many animal 
models have been generated to mimic the CF 
symptoms in human patients. The earliest models 
were in mice with ∆F508 mutation -cftr mutation 
(16, 89, 96, 116). CF mouse models have made 
significant contributions toward our understanding 
of the disease and the development of therapies 
(96). Different CF mouse models have been 
developed, such as the exon 10 knockout (KO) 
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model, the ∆F508 model (16, 105), and the 
G551D model (22). However, significant 
limitations have been acknowledged in translating 
the information gained from CF mice to the 
humans. For example, unlike human CF patients, 
CF mice show neither pulmonary pathophysiology 
nor obvious pancreatic pathology or liver 
problems (88). Recently established CFTR KO 
rats recapitulate several features of human CF 
disease; however, they do not develop 
spontaneous lung infections (96). CFTR KO 
ferrets, and CFTR KO and ∆F508 pigs generated 
by nuclear transfer have shown a similar 
pathology to that observed in human CF patients 
(101), including lung, pancreatic and liver 
phenotypes that were not often found in CF mice. 
However, neither pigs nor ferrets are convenient 
laboratory species. Both CF ferrets and CF pigs 
suffer from meconium ileus, which causes these 
animals to die within a few days after birth; 
therefore, they are associated with high 
maintenance cost and require special animal 
handling skills (45). These factors have limited the 
applicability of CF pigs and ferrets almost 
exclusively to the labs originally producing these 
animals and a few groups closely associated with 
them (Table 1). An ideal animal CF model would 
mimic the characteristics of human CF patients 
including the pancreatic insufficiency, but not 
require exceptional expertise or resources.    
 

Rabbits for CF research 
 There are anatomical, genetic, and biochemical 
similarities between rabbit and human (44), 
making the rabbit a potentially more relevant 
model for biochemical, molecular and 
physiological characterization of CF pathology 
and for the development of CF therapies than 
mice. As shown in Table 2, the amino acid 
sequence of rabbit CFTR shares about 93% 
identity to that in human (Table 2). Rabbit also 
has a chromosome arrangement that is similar to 
humans: 44 chromosomes in rabbit vs. 46 in 
human; both rabbit and human CFTR genes are 
present on chromosome 7. Compared to other 
large animals, such as the pig and ferret, a rabbit 
is a standard lab animal species that can be 
easily housed in most research institutes and is 
relatively economically affordable.   Though 
rabbits airways have some anatomic and 
physiologic features similarly found in humans, 
the main concern associated with using rabbits for 
CF research is the absence of airway submucosal 
glands (SMGs) in rabbits (115). Since CFTR is 
abundantly expressed in SMGs of human 
airways, it has been hypothesized that 
dysfunction of SMGs initiates CF-like lung 
disease, leading to mucus accumulation observed 
in CF patients, as well as in CF pigs and ferrets, 
both of which contain SMGs in their airways. On 
the other hand, the absence the glands from mice 
airways has been cited as one of the explanations 

Table 1. Characteristics of cystic fibrosis and key clinical consequences noted in animal models. With 
emphasis on the rabbit model the table summarizes the differences of phenotypes of CF in all known animal 
models. In addition, we showed the type of laxatives that will help overcome the gut impaction. The pancreas 
defect was also shown in the different models. * represents the cost of the animal model on a 1 to 5 scale. 
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for lack of lung disease in CFTR KO mice. 
Therefore, it has been predicted that CFTR 
deficient/defective rabbits are unlikely to display 
mucociliary defects and spontaneous lung 
infections associated with CF. However, our 
preliminary data reveals that CF rabbits have a 
similar airway pathology to that in human CF 
patients (Tables 1 & 2). Although CFTR-/- KO 
rabbits eventually develop distal intestinal 
obstruction, meconium ileus is rarely observed in 
the animal within the first month after birth 
because rabbit has a large functional cecum. To 
some extent, our work challenges the traditional 
view on the importance of SMGs in CF pathology, 
suggesting that SMGs may not be a critical player 
for the development of CF lung disease. In 
support of this view, overexpression of βENaC in 
mice can produce mucus obstruction in the small, 
non-glandular airways (57), which are thought to 
be the site of disease initiation in cystic fibrosis 
neonates (124). In CF pigs, the mucus appears to 
arise from goblet cells in the surface of the 
epithelium of the airways (99). Mucus 
accumulation in CF ferret airways is associated 
with variable levels of goblet and mucus cell 
hyperplasia in the surface airway epithelium and 
submucosal glands (101). More recent data 
indicated that defective goblet cell exocytosis in 
CFTR KO mice contributes to CF-associated 
disease in the intestine (55). In fact, though SMGs 
in airways might be a primary site for CF 
pathogenesis, a critical role for mucus-producing 
goblet cells in CF airway pathology has not been 

excluded. Indeed, our preliminary data revealed 
that the goblet cells, which exist in rabbit airways, 
maybe the primary contributor to mucus 
accumulation in the airways of CFTR KO rabbits 
(Table 1 & 2). 
 
ΔF508 mutation 
Mutations of the gene encoding CFTR lead to CF, 
and more than 2023 CF mutations (disease 
related or not) have been identified 
(http://www.genletsickkids.on.ca/cftr/) in the CFTR 
gene. The most common mutation in CF is the 
deletion of the phenylalanine residue at position 
508 (ΔF508) (13), which is in the first nucleotide 
binding domain of CFTR. The ΔF508 mutation is 
present in more than 90% CF patients. A critical 
issue in CF disease is the inability of ΔF508CFTR 
to achieve the native, folded state required for its 
export from the endoplasmic reticulum (ER) and 
traffic to the cell surface. Instead, ΔF508 protein is 
exclusively retained in the ER and degraded by 
the ubiquitin-proteasome system (13, 43, 113). A 
therapeutic strategy aimed at facilitating ΔF508 
folding and trafficking is highly desirable for 
treatment of the disease because ΔF508 mutant 
has a substantial CFTR Cl current if it reaches the 
cell surface (23). A new drug, Orkambi, that 
combines a CF corrector (Lumacaftor, which acts 
as a chaperone for a correct protein folding which 
increases the number of CFTR proteins to the cell 
surface) and potentiator (Ivacaftor, increases the 
activity of the CFTR (conductance) at the cell 
surface) recently has received breakthrough 

Table 2. CFTR related characteristics among species. 
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therapy designation to treat CF patients with 
ΔF508CFTR. However, this drug only improves 
lung function assayed by forced expiratory volume 
in 1 second (FEV1) by 2.6-4%. Therefore, further 
research on ΔF508 mutation is needed to develop 
a better drug to treat CF patients.    
 
3. CFTR Deficiency in CF 
The Cftr gene encodes the CFTR protein, a 
member of the ABC transporter superfamily, 
which is the cAMP-dependent Cl channel at the 
apical membranes of most epithelial cells, making 
it unique among members of this protein family 
(75). The CFTR protein migrates to the surface of 
cells that line the pancreatic duct, airways, 
gastrointestinal tract, biliary tract, part of the male 
reproductive tract and cells that are part of sweat 
glands (50, 75, 79). CFTR forms a pore or 
channel that allows ions, including chloride and 
bicarbonate, to move from one side of the cell 
membrane to the other (Figure 1) (58, 83). 
Channel activation is mediated by cycles of 
regulatory (R) domain phosphorylation by 
PKA/PKC, ATP-binding to the nucleotide-binding 

domains, and ATP hydrolysis (Figure 1). 
Demonstration that CFTR functions as a chloride 
channel regulated by cyclic AMP (cAMP)-
dependent phosphorylation is consistent with the 
ion transport disturbances documented in cystic 
fibrosis tissues (for review, see(20)). These 
disturbances in ions change the concentration of 
molecules in the fluid within the ducts or organs 
(117). 
 
4. CFTR Protein Structure  
The CFTR protein is comprised of 1480 amino 
acids organized into 5 functional domains (87, 
114). As other ABC transporters, CFTR has two 
membrane-spanning domains (TMD1 and TMD2), 
two nucleotide-binding domains (NBD1 and 
NBD2) and one regulatory domain (R) (Figure 1). 
For more insights regarding the structure of CFTR 
see the review by Patrick and Thomas  (74). The 
two TMDs, each composed of 6 transmembrane 
segments, form the CFTR channel pore, and the 
two NBDs interact with nucleotides to regulate 
channel activity opening and closing of the TMDs 
(Figure 1) (74, 114). The R domain, through 

Figure 1. Activation of the CFTR channel. The cystic fibrosis transmembrane conductance regulator (CFTR) 
protein channel is a member of the ABC transporter superfamily. It acts in apical part of the epithelial cells as a 
plasma-membrane, cyclic AMP-activated chloride and bicarbonate anion. CFTR has two membrane-spanning 
domains (TMD1 and TMD2), two nucleotide-binding domains (NBD1 channel and NBD2) and one regulatory 
domain (R). CFTR is a key regulator for cell surface water-salt homeostasis of the apical membranes of 
epithelial cells in multiple organs including the pancreas that produces alkaline fluid in pancreatic ducts. The 
open status of the CFTR is initiated by ATP binding at the NBD domains. The activation of the channel is 
dependent on phosphorylation by cyclic AMP-dependent protein kinase (PKA) at multiple sites in the R domain. 
The magnitude of response to PKA is amplified by phosphorylation of CFTR by protein kinase C (PKC). 
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interactions with the N-terminal cytosolic region of 
TMD1, also controls the channel activity (12, 64, 
114). NBDs are responsible for the binding and 
hydrolysis of the ATP, which causes a 
conformational change in the TMDs leading to the 
transport of substrates across cell membranes 
(95). CFTR mutations can occur in any of the five 
protein domains. However, many mutations occur 
in NBD1, including the ΔF508 mutation. The 
location of the CFTR mutations can affect the 

formation or function of the CFTR protein (Figure 
2, Table 3) (114). In Table 3 we summarized the 
role of not only the major domains described for 
CFTR but also the connecting sequences which 
include: N-terminal, intracellular loops (ICL), 
extracellular loops (ECLs), transmembrane 
helixes 1 through 12, C-terminal domain. The N-
terminal domain was shown to be involved in the 
folding and the trafficking of the CFTR protein 
through protein-protein interactions (e.g. syntaxin  

Figure 2. Classes of CFTR mutations. Class I mutations lead to no protein synthesis, which includes 
mutations that includes premature stop codons and nonsense mutations. Class II mutation include the most 
frequent mutation of CF disease, ΔF508, which lead to trafficking, improper folding, and processing defects of 
the CFTR protein. This class is the primary target in the CF research and the main target by the 
pharmaceuticals companies. Class III mutations affect the ATP binding at one of the 2 binding sites in the 
NBDs. The CFTR protein reaches the cell surface but the mutations render the CFTR channel nonfunctional 
which impairs the opening of the channel. Class IV mutations also involve CFTR protein reach the cell surface 
but with reduced ion passage through the channel because of the structural defect caused by the mutations in 
the CFTR channel. Class V mutations affect the amount of CFTR protein that reaches the cell surface because 
of a splicing problems or inefficient trafficking. Class VI mutations lead to a rapid turnover of the CFTR channel 
at the cell surface. Examples of CFTR mutations regarding their pancreatic defects, PI or PS. 
The mutations mentioned in the table are representative of each class, but we have to keep in mind, according 
to the new classification some mutations are classified in more than one class which will result of having more 
than one defect. 
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Domains Amino acids Functions 
Positive 
charge 

residues 

Mutations causing 
CF References Pancreas 

N-terminal 1 to 81 
Folding and/or 

trafficking Protein 
Interaction   (28, 65) PI 

TM1 82 to 103 Regulation of pore 
function; Pore lining K95  

(39, 111, 112, 
120)  PS/PI 

ECL1 104 to 117 Stability of the CFTR 
ion pore  R117C/H/L/P  (34, 42, 49, 

111) PS/PI 

TM2  118 to 138 CFTR pore lining R134  
(52, 111, 112, 

120) PS/PI 

ICL1 139 to 194 Pore opening  E193K, I148T (11, 18, 56)   PS/PI 

TM3 195 to 215 ND  

Q207 form a bond 
with the mutation 

V232D 
(103)   

ECL2 216 to 220    (34)   

TM4 221 to 241 Loss of function of 
pore  V232D (26, 73, 103)   PS/PI 

ICL2 242 to 307 Protein folding, 
Processing in the ER   (7, 56)  

TM5 308 to 328 Anion binding   (112)  

ECL3  329 ND     

TM6 330 to 350 Pore lining; anion 
selectivity 

R334, K335, 
R347  (112, 120)  PS/PI 

ICl2.5 351 to 432 ND     

NBD1 433 to 586 

Hydrolyzation of ATP, 
Channel opening,  
regulation of the 

sodium ion channel  
 

Delta(F508); G551D; 
G542X (90, 119) PI 

R 587 to 859 Phosphorylation sites 
for PKA/PKC  

 D648V, E664X, 
E656X and 
2108delA 

(3)  PI 

TM7 860 to 870 ND     

Table 3. Domains structure of CFTR. A detailed description of the CFTR domains consist of a n-terminal, 6 
intracellular loops (ICL), 6 extracellular loops (ECL), 12 transmembrane (TM) arranged into TMD1 and TMD2 
consist of 6 TM for each domain, NBD1 and NBD2, and the c-terminal domain. The specified aa for each 
domain, their known function, positive charge residues, some mutations causing CF, and their effects on the 
pancreas are as well described. 

PI: pancreas insufficient, PS: pancreas sufficient. 
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ECL4 881 to 911 Glycosylation at 
N894 and N900  Q890X, K892C (10, 29, 42)   

TM8 912 to 932 ND  S912L (29)   

ICL3 933 to 990 Conductance  
S945L, H949Y, 

G970R (29, 94)  PS/PI 

TM9 991 to 1011 ND     

ECL5 1012 ND     

TM10 1013 to 1034 Processing  R1030   PI 

ICl4 1035 to 1102   
 L1065P, R1070Q, 

Q1071P (29)   

TM11 1103 to  1123 Pore lining; anion 
selectivity   

(39, 111, 112, 
120)  PS/PI 

ECL6 1124 to 1128 ND     

TM12 1129 to 1150 Pore lining; anion 
selectivity  

M1137V, M1137R, 
I11139V and 
deltaM1140 

(107, 112, 
120) PS/PI 

ICL5 1151 to 1218 Conductance  
D1152H,  D1154G,  

W1204X (29, 107)  PS/PI 

NBD2 1219 to 1386 Maturation, gating  

N1303K, G1349D, 
G1244E, S1251N, 

S1255P, and 
G1349D  

(107)  PI 

C-terminal 1387 to 1480 ND     

 

1A) and mutations in this domain reduced the 
function of the channel (28, 65). Some 
transmembrane (TM) helices have been studied 
more than the others. For instance, the results 
from many studies suggested that 
transmembrane segments,TM1, TM2, TM6, TM11 
and TM12 form the pore lining and regulate the 
pore function by selecting the anions (111, 112, 
120), whereas TM5 plays a role in the anion 
binding (112). Also, V232D mutation in TM4 leads 
to a loss of function because it forms a bond with 
Q207 in TM3 which does not occur in the WT 
form of CFTR (73, 103). The mutation V232D is 
not the only mutation that involves a change from 
a neutral/hydrophobic residue to a polar or 
charged residue, causing CF. Therien et al, 
studied more than 31 mutations in TMD1 

including all 6 TM helices and concluded that 
CFTR mutations in the TMs lead to a loss of 
function through the formation of membrane-
buried interhelical hydrogen bonds (103). 
Extracellular Loops (ECLs) 1 through 6 
represent about 4% of the CFTR protein, 
whereas 77% is in the cytoplasm and the rest, 
19%, includes TM1 to 12. CF-associated 
mutations in the ECLs have been shown to 
affect channel gating (34), and interactions with 
extracellular anions (54, 121). For example, 
mutations D110H/E and R117C/H/L/P in ECL1 
are associated with CF disease. These 
mutations affect the stability of the CFTR ion 
pore, resulting in reduced conductance of CFTR 
(34, 42). Q890X and K892C mutations in ECL4 
have been reported to affect channel gating and 
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extracellular anion interaction (10, 29, 42). ECL4 
is the only extracellular loop that contains N-
linked glycosylation sites (N894 and N900) (10). 
Many studies have been performed on the 
function of CFTR’s intracytoplasmic loops (ICLs) 
including their roles in regulating inter-molecular 
interactions as well as CFTR interactions with 
other proteins. E193K and I148T mutations in 
ICL1 have been reported to affect the pore 
opening (11, 18). Recent studies showed that ICL 
2/3-NBD2 interface and ICL1/4-NBD1 interface 
have a role in protein folding and processing in 
the ER (7, 56). In addition, S945L, H949Y and 
G970R mutations in ICL3, L1065P, R1070Q and 
Q1071P mutations in ICL4, and D1152H, D1154G 
and W1204X mutations in ICL5 have been shown 
to affect the conductance of CFTR (29, 94, 107),. 
As for the rest of the domains, ATP-binding 
events occurring in both NBDs allow the 
hydrolysis of intracellular ATP to ADP (6). This 
event allows the conformational changes, and that 
change in structure allows the CFTR channel to 
transition from an opened to closed state, thus 
controlling the gating kinetics of the channel (6). 
NBD1 was studied more than NBD2 due to the 
presence of frequent ΔF508 deletion of NBD1 in 
the CF patients. The ΔF508 is present in more 
than 70% of the CF patients, resulting in 
destabilization of the CFTR protein (6, 90, 119). 
Also, mutations ΔF508 and G551D modify the 
interactions between NBDs and NBDs–ICLs (6). 
Other well-studied NBD1 mutations such as 
G542X and G551D result in channel-gating 
problems (6, 90, 109, 119). Similarly, NBD2 
mutations like N1303K, p.Ile1234_Arg1239del, 
G1244E, S1251N, S1255P, and G1349D are CF 
disease related, and are considered to be gating 
mutations (109). The R domain, along with NBDs, 
control the channel activity of CFTR. The 
activation of the channel is dependent on the 
phosphorylation by cyclic AMP-dependent protein 
kinase (PKA) (93). To date, more than 15 
phosphorylation sites in the R domain have been 
attributed to PKA phosphorylation, which 
contribute in varying proportions to the response 
to activation of the CFTR channel (93). It has 
been reported that CFTR also can be 
phosphorylated by several other protein kinases 
including protein kinase C (PKC), casein kinase II, 
cyclic GMP activated protein kinase, and Src 
kinase (93). The R domain has multiple 
phosphorylation sites for PKC, which modulate 
PKA-induced domain-domain interactions (92).  

Many CF-related mutations like D648V, E664X, 
E656X and 2108delA in the R domain disrupt the 
normal function of the R domain, e.g. the 
transport of HCO3

- in secretory epithelia and in CF 
(3, 14). The same authors showed that mutants 
reported to be associated with CF with pancreatic 
insufficiency do not support HCO3

- transport, and 
those associated with pancreatic sufficiency show 
reduced HCO3

- transport (14).  
 
5. Classification of CF Patients 

Traditional classification 
As mentioned above, more than 2023 CF 
mutations have been identified 
(http://www.genletsickkids.on.ca/cftr/) in the CFTR 
gene. These mutations are categorized based on 
the dysfunctions of CFTR at different levels of the 
maturation and function of the CFTR channels 
(Figure 2). Traditionally, these dysfunctions were 
divided into 6 groups based on function (Classes 
III, IV, and VI) and processing (Classes I, II, and 
V) of the CFTR (Figure 2) (51, 58, 108). The 
class I mutations includes a nonsense, frame-
shift, or splicing mutations which prevent CFTR 
biosynthesis by introducing a premature 
termination codon (PTC). The most common 
mutation in this class is the G542X (Figure 2).  
 
The class II mutations include a missense 
mutation which causes misfolding of the CFTR to 
lead to its degradation in the ER by quality-control 
machinery, resulting in the absence of functional 
protein at the cell surface. The most important 
mutation in this class is the ΔF508 presents in 
more than 90% of CF patients (Figure 2). 
 
The class III mutations include a missense 
mutation which lead to a non-functioning CFTR at 
the cell surface resulting in unstable and reduced 
channel gating characterized by a lower open 
probability. The most common mutation 
representing this class is the G551D (Figure 2). 
 
The class IV mutations include missense mutation 
which leads to a reduced CFTR channel 
conductance. The decrease in conductance is 
caused by an abnormal the conformation of the 
pore resulting in disruption of the ion flow. The 
most common mutation in this class is the R117H 
(Figure 2). 
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The class V mutations introduce splicing or 
promoter defects in the CFTR gene, resulting in a 
reduced amount of CFTR protein at the cell 
membrane caused by reduced protein synthesis. 
Those mutations affect the gene expression, but 
do not change the conformation of the channel. 
The most representative mutations in this class 
are the 3849+10kbC-T and A455E (Figure 2). 
 
The class VI mutations include missense mutation 
which lead to a decrease in the CFTR stability. 
These mutations result in an accelerated turnover 
of CFTR protein at the cell membrane and 
reduced apical cell surface expression (108). The 
most representative mutation in this class is 
Q1412X (Figure 2). 
 
Though more than 2023 mutations/variants have 
reported for CFTR, whether each of these can 
cause channel dysfunction and disease is largely 
unknown. However, studies to predict the 
functional consequences and clinical outcome of 
individual patients carrying these mutations are 
being conducted (24, 97). These interpretations of 
such studies have been challenged by the general 
lack of correlation between the genotype and the 
clinical severity (24) (Table 1). 
 
New classification 
The lack of correlation between the genotype and 
the phenotype of the CF patients led to a new 
classification based on the severity and the 
clinical symptoms of the CF patients. Recently, 
Dupuis et al, studied meconium ileus (MI) in CF 
patients, and reported that only a subset of 
patients with CF develop MI (24). Furthermore, MI 
demonstrates notable heritability. Although 
studies have shown that non-CFTR genes 
contribute to susceptibility, the CFTR genotype 
itself affects the occurrence of this complication; 
only patients with the more severe CFTR variants 
are at risk for MI (24). It was hypothesized that the 
susceptibility to MI is influenced by specific CFTR 
genotypes, and that the prevalence of MI can be 
used to discriminate among severe CFTR 
mutations (24). The pleiotropic molecular defects 
of a single mutation in the CFTR has limited the 
drug therapy effects for some mutants which have 
been categorized as class I, II, or II/IV (108). The 
authors proposed a modification of the traditional 
class I–VI CF mutations classification. This 
expanded classification of the major mechanistic 
categories (87, 114, 122) accommodates the 

unusually complex, combinatorial 
molecular/cellular phenotypes of CF alleles. The 
new classification consists of 31 possible classes 
of mutations, including the original classes I, II, 
III/IV, V, and VI, as well as their 26 combinations 
(108). For example, according to the expanded 
classification, G551D will be designated as a 
class III mutation as before (114), while ΔF508 
will be classified as class II–III–VI, W1282X as 
class I–II–III–VI, P67L as class II–III, Q1412X as 
class III–VI and R117H as class II–III/IV, reflecting 
the composite defects in mutant CFTR biology 
(108). More evidence supporting the new 
classification came from a study by Vertex 
Pharmaceuticals where they tested 54 missense 
mutations and found that 24 of them have both 
processing and gating defects (106).  
 
6. CFTR Function and Its Role in 
Pancreas 
Cystic fibrosis and exocrine pancreas 
As mentioned above, CFTR is predominantly 
expressed on the apical membrane of epithelial 
cells in the small pancreatic ducts. CFTR acts as 
a selective ion channel involved in chloride, 
bicarbonate (HCO3

-), water transport across the 
apical membranes of epithelial cells in multiple 
organs including the pancreas that produces 
alkaline fluid in pancreatic ducts (30, 70, 117). 
HCO3

- is an important ion in the pancreatic juice. 
It also facilitates solubilization of the digestive 
enzymes and mucins (52). Indeed, aberrant 
HCO3

- transport has a crucial role in human 
diseases (79, 80). In his review, Quinton 
proposed that in CF patients, the HCO3

- is 
required to form normal mucus. His explanation is 
that once granule is released, HCO3

- sequesters 
Ca2+ and H+ ions away from the mucin anions to 
form a complex with them. Therefore, lack of 
secreted HCO3

-  in CF patients impairs Ca2+ 
removal, prevents normal mucin expansion, and 
promotes stasis of mucus in the ducts or on the 
luminal surfaces of affected organs (79). In 
addition, reduced secretion of HCO3

- and chloride 
(Cl-) leads to a more acidic and viscous luminal 
content (39). MUC6 is one of the pancreatic 
mucins expressed by 13 weeks of gestation and 
shows a very similar distribution to that of CFTR. 
In addition, MUC6 mucin is the main constituent 
of the complexes that form in small ducts and 
cause obstruction (81). Therefore, CF patients 
carrying mutations in the CFTR gene, showed a 
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lower pH, low flow of secretions and high protein 
concentration in the pancreas duct secretions, 
which lead to precipitates in the duct lumina that 
obstruction and injury (30, 117). Meyerholz and 
his colleagues showed in the CF pig model that 
the changes (obstruction) could be detected in 
gestations as early as week 17 (59). They showed 
that the site of obstruction ranged from the distal 
jejunum to the proximal spiral colon, similar to that 
reported in humans with meconium ileus (59, 63). 
The obstruction in the acini and ducts lead to 
dilatation which causes epithelial injury and 
destruction, inflammation, fibrosis and fatty 
infiltration (30, 41, 59). Tucker and colleagues 
reported that acinar plugs developed before 
mucous metaplasia and found that early acinar 
plugs are composed of zymogen granules and 
were distinct from mucus in pancreatic tissue of 
cystic fibrosis patients (104). These findings then 
indicate that zymogen material from the acinar 
cell, not mucus, may become inspissated in the 
acinus in early cystic fibrosis, and that subsequent 
mucous metaplasia occurs as the obstruction and 
exocrine atrophy progress (104). 
 
CFTR and Hyperinflammation 
As mentioned above airways of the lungs become 
colonized with bacteria and repeated pulmonary 
infections ensue. The recurrent infections and 
inflammation result in submucosal gland 
hypertrophy and excessive mucus secretion. The 
impaired mucociliary clearance and plugging of 
small airways cause progressive bronchiectasis 
and ultimately lead to respiratory failure (100). 
Many studies have been done to explain the 
cause of the hyperinflammation in the CF 
patients. Many have suggested that the balance 
between Th1, Th2, and Th 17 could play a role in 
the CF disease (31). It has been established that 
Th17 is known to be a key player in autoimmune 
diseases (40). In addition, the authors showed 
that Th17 is regulated by miR-183C via inhibition 
of Foxo1(40). For a long time, it has been thought 
that CFTR mutations in epithelia cells have an 
indirect effect on the immune system which 
causes the inflammation in the lungs, because of 
the colonization of bacteria in the lungs like P. 
aeruginosa, Burkholderia cenocepacia, and 
Mycobacterium abscessus which causes the 
infections in the CF patients (31).  Recently, 
emerging evidence points the problem to be 

directly affecting the immune cells. Since it has 
been shown that CFTR is expressed in 
lymphocyte T cells (like Th2, Th17, and Tregs) 
and macrophages, so CFTR mutations causing 
CF may have a direct impact on these cells. 
Grumlli et al summarized in his review, that CFTR 
mutations have a direct effect on the T cells 
function which results in an enhanced Th2 
response, a reduced Treg population and 
elevated Th17 response which translate by an 
increase of neutrophils and recruitments by IL-17 
to the lung which leads to the destruction of 
alveoli in the lungs of CF patients (31). In addition 
to the lymphocytes and neutrophils, macrophages 
also has been shown to participate to the lung 
decay found in CF patients through activation of 
MMp12 (31). Understanding better the 
mechanisms behind the infections and the 
immune response could lead to a better drug 
therapy targeted to each patient depending on the 
severity of the CF disease.  
 
Cystic fibrosis and endocrine pancreas 
CF is also recognized to affect the endocrine 
pancreas. There is a correlation between glucose 
abnormalities, morbidity and mortality in CF 
patients (67, 69). Glucose abnormalities include 
cystic fibrosis-related diabetes (CFRD) and 
impaired glucose tolerance (IGT). CFRD is one 
complication in the CF patients occurring in more 
than 40 % of adults and 25% of adolescents, 
which is preceded by episodes of impaired 
glucose tolerance (19, 61, 67, 91). Both reduced 
insulin secretion and insulin resistance are 
observed in CFRD (36, 62, 66, 78). CFRD has 
characteristics of both type I and II diabetes and 
does not belong to either one of the diabetes 
classes. It is characterized by the loss of 
functional β cell mass and varying degrees of 
insulin resistance (Figure 3) (30, 62, 66). 
Mutations in CFTR that lead to both a decrease in 
islet cell mass and dysfunction in the β cell are the 
cause of CFRD (17, 67, 86). It is believed that 
cross-talk between pancreatic exocrine and 
endocrine components can also contribute to the 
CFDR (Figure 3). Destruction of pancreatic 
exocrine tissue caused by a decrease in the islet 
cell mass evolves to dysfunctional endocrine β 
cells (5). β cell dysfunction may be caused by 
increased oxidative and endoplasmic reticulum 
(ER) stress which are associated with CFRD (27, 
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77, 84, 118). It is very well documented that 
glucose deprivation leads to ER stress (118).  
Some CFTR mutations (Like ΔF508) can cause 
the accumulation of unfolded proteins in the ER, 
triggering an evolutionarily conserved response, 
termed the unfolded protein response (UPR) (2). 
In addition, aberrant Ca2+ regulation in the ER 
lumen causes protein unfolding and rapid 
degradation of mutated CFTR proteins may 
contributes to the complex multi-organ CF 
pathology (48). It is known that ER stress triggers 
β cell death typically by apoptosis when protein 
misfolding is persistent or excessive (76). As 
Harding at al stated, the special sensitivity of 
insulin-producing cells to a mutation (like CFTR 
mutations) that affects a signaling protein 
responsive to ER stress may also be relevant to 
the development of more common forms of 
human diabetes mellitus. The major abnormality 
in most patients with CFRD is resistance to the 
action of insulin. However, glucose intolerance 
develops only after β cell decompensation 
renders the endocrine pancreas unable to keep 
up with the demand imposed by IR (37). Because 
of their high rates of protein synthesis, β-cells are 

particularly susceptible to ER stress, which may 
trigger CFRD (67). The expression of CFTR was 
reported to be required in β-cells for glucose-
induced secretion. Therefore, CFTR plays a 
significant role in the normal function of pancreatic 
β-cells (85). Ntimbane and his colleagues have 
summarized the factors leading to an abnormal 
glucose homeostasis in CF patients: (a) 
impairment of β-cell function with progressive 
fibrosis of islets of Langerhans with resultant 
distortion, ischaemia, cell death and a decrease in 
islet numbers; (b) impairment of other islet cell 
functions; (c) impairment of the insulinotropic gut 
hormone secretin; (d) changes in insulin 
sensitivity; and (e) altered insulin clearance rate 
(67). The exact cause and mechanism of CFRD 
are still largely unknown. The most probable 
cause of CFRD is a combination of many events 
and unlikely to be attributable to one defect. The 
clinical effects and disease states associated with 
CF patients with CFRD include: chronic 
pancreatic inflammation, dysfunction of the 
immune system, oxidative stress, impaired insulin 
production and secretion, variable state of IR and 
altered entero–insular axis hormones (30, 67). 

Figure 3. CF and pancreas defects. Schematic representation of the cross talk between exocrine and 
endocrine of the pancreas. Defects in the exocrine pancreas leads to PI and PS, causing the anions imbalance. 
Defects in the endocrine pancreas leads to CFRD. As summarized in this diagram, many factors, defects and 
the crosstalk between endocrine and exocrine leads to the phenotypes described in the CF patients including 
PI, PS, and CFRD. 
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Insulin secretion and CFTR 
All the proposed causes mentioned above are 
supported by evidence to explain the 
pathogenesis of impaired insulin secretion in 
CFRD. An additional cause not mentioned above 
is the expression and direct effect of CFTR on 
insulin secretion in the β-cells (26, 32, 47, 102). 
The expression of CFTR has been reported in 
cultured β-cells derived from mice (MIN6) or rat 
(RINm5F) (26, 32, 68). But the earliest report 
came in 2007 from studies by Boom and his 
colleagues showing the expression of CFTR 
protein in rat islet cells and the significantly higher 
level in non-beta than in beta- cell populations (8). 
They also showed by immunohistochemistry 
studies that CFTR expression also occurs in 
glucagon-secreting alpha-cells (8). Guo and his 
colleagues demonstrated that glucose-induced 
whole-cell currents, membrane depolarization, 
electrical bursts or action potentials, Ca2+ 
oscillations and insulin secretion in β-cells are 
dependent on CFTR, indicating an essential role 
of CFTR in the regulation of insulin secretion (32). 
Their studies showed that specific inhibitors of 
CFTR (GlyH-101 and CFTRinh-172) blocked a 
CFTR Cl- gating needed for insulin secretion in 
primary β-cells and ΔF508-CFTR mutant mouse 
islets (32). In addition, Edlund and her colleagues 
detected small CFTR conductance in both human 
and mouse beta-cells. The augmentation of 
insulin secretion by activation of CFTR by cAMP 
(forskolin or GLP-1) in the presence of glucose 
was significantly inhibited by the specific CFTR 
inhibitors. They also demonstrated reduced 
cAMP-dependent exocytosis upon CFTR-
inhibition, concomitant with fewer docked insulin 
granules (26). These reports and others from the 
patients with CFTR mutations showed 
insufficiency of secreted insulin. However, these 
studies did not describe the molecular mechanism 
that cause a decrease in insulin secretion. In 
addition, to the role of CFTR in regulating insulin 
secretion and exocytosis after glucose-induced 
membrane depolarization leading to insulin 
secretion, the study also demonstrated that CFTR 
molecules act upstream of the chloride channel 
Anoctamin 1 (ANO1; TMEM16A) in the regulation 
of cAMP- and glucose-stimulated insulin secretion 
(26). Thus the impaired insulin secretion seen in 
patients with CF would be caused by the lack of 
glucose-induced Cl- efflux through both CFTR Cl-  
channels and ANO1 due to a decreased 

membrane depolarization (26, 32). In summary 
these study showed that CFTR is an important 
regulator of pancreatic β-cell insulin secretion, 
exocytosis, and membrane depolarization, and is 
induced by glucose via elevation of cytosolic Ca2+ 
concentration (32, 47, 58). 
 
Marunaka in his recent review summarized new 
studies connecting the role of CFTR and ANO1 in 
insulin secretion (58). Briefly, it has been 
established that intracellular Cl- concentration 
([Cl−]) is a very useful marker of channel activity. 
In these recent studies, the authors showed that 
[Cl−] measured using N-(ethoxycarbonylmethyl)-6-
methoxyquinolinium bromide (MQAE) is about 
100 mM under the basal condition in RINm5F β 
cell line, and application of CFTRinh-172 (an 
inhibitor of the CFTR channel) increased [Cl−] 
about 26 mM (32). This means that CFTR indeed 
mediates Cl- efflux under basal condition, which 
may maintain a relatively depolarized membrane 
potential in the β-cells at rest, and the 
electrochemical potential of Cl− in the intracellular 
space is larger than that in the extracellular space 
(32, 58). This was confirmed by showing that 
membrane potentials of pancreatic β cells 
expressing wild-type CFTR Cl− channels are 
−61~−67 mV [70], but hyperpolarized to −75 mV 
when using CFTRinh-172 or ΔF508 (32). Thus, 
CFTR has an important role in determining the 
resting membrane potential of the β-cells by 
acting as a Cl− channel to maintain the membrane 
depolarization (32). The same study also showed 
that ΔF508 CFTR Cl− channel decreases 
membrane depolarization induced by glucose and 
increases [Ca2+] due to the activation of voltage-
dependent Ca2+ channels (32, 58). In his review, 
Marunaka concludes that the loss of CFTR 
function leads to insulin insufficiency which is 
caused by the higher intracellular Cl− 
electrochemical potential in pancreatic β cells. “In 
general, Cl− uptake into the intracellular space is 
mediated via active Cl− transporting systems, 
such as Na+-Cl− cotransporter (NCC) and/or 
NKCC, driven by the Na+,K+-ATPase-generated 
Na+ chemical potential difference between the 
intracellular and extracellular spaces: the 
intracellular Na+ chemical potential < the 
extracellular Na+ chemical potential. Therefore, if 
we could increase the [Cl−] by elevating the NCC- 
and/or NKCC-mediated Cl− uptake, the 
insufficiency of insulin secretion would be 
improved via membrane depolarization due to an 
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elevation of Cl− efflux from pancreatic β cells of 
ΔF508 CFTR-expressing CF patients.  
 
Recent studies contradict the findings by Guo et 
al, by presenting some evidence using the ferret’s 
pancreas that β-cells do not express CFTR (102). 
The authors showed that CFTR RNA is expressed 
in exocrine and not in endocrine cell types of 
islets and pancreas. They used a different 
approach, smFISH, to show the expression of 
CFTR.  WT and CFTR-KO neonatal ferret 
pancreas were used to perform CFTR and INS 
dual smFISH. As expected, the INS was present 
in both genotypes, but CFTR was present in the 
WT pancreas (102). More importantly, CFTR RNA 
was not co-expressed in INS (β-cell), GCG (α-
cell), PPY (PP cell), or SST (δ-cell) expressing 
cells but was expressed in KRT7-expressing 
ductal cells in the WT pancreas. Similarly, same 
findings were shown in dissociated cells from 
isolated adult ferret and human islets (102). 
These findings contradict the previous findings by 
Guo et al, and demonstrate that exocrine-derived 
duct cells associated with isolated islets express 
the highest levels of CFTR and support a 
mechanism by which CFTR dependent duct/islet 
crosstalk might influence β-cell insulin secretion 
(102).  
 
Although there is evidence that supported each of 
these contradicting studies, a clear resolution to 
the question of whether CFTR directly or indirectly 
functions within the β-cells or other islet cell types 
to support insulin secretion needs further 
clarifications. 
 
Role of glucose transporters (GLUTs) in 
CF and their impact in the pancreas  
As mentioned above, glucose abnormalities in CF 
include CFRD and impaired glucose tolerance. 
The relationship between CFTR and the causes 
of CFRD is still not very well established. Studies 
are also emerging regarding the implication of 
GLUT transporters in developing the diabetic 
state in CF patients (53). In studies regarding 
obesity and diabetes, it was reported that CFTR 
was significantly decreased, while GLUT5 and 
Villin were increased in the jejunum (53). It is 
known that CFTR Cl– channel provide the major 
route for Cl– exit across the apical membrane in 
normal murine intestine and disturbance in the 
anion exchange and recycling of K+ is thought to 
be one of the causes of diabetes (53).  

 
Recently it was reported that GLUT4 and apical 
insulin are expressed in normal human airway 
epithelial cells (60). The authors also showed that 
cells expressing F508del-CFTR have impaired 
glucose uptake, elevating action on the trans 
epithelial resistance, and diminishing action on 
paracellular flux of small molecules after insulin 
stimulation (60). In a different study, GLUT4 
subfractionation demonstrated that, despite 
insulin stimulation, the GLUT-4 content of 
intracellular-associated subfraction was 
significantly higher in CF subjects compared with 
controls, corresponding to significantly lower 
GLUT-4 content in cell surface-associated 
subfraction (35). These findings are consistent 
with the abnormal subcellular localization of 
GLUT-4. Impairment of GLUT-4 translocation in 
CF correlated with higher TNF-α levels in all CF 
subjects than in controls (35). CF patients that 
have CFRD with a decreased insulin secretion 
could be explained by the elevation of TNF-α and 
impaired translocation of GLUT-4. In addition, the 
results indicate that the function of CFTR Cl− 

channels is required for insulin to stimulate 
glucose uptake, elevate the transepithelial 
resistance, and diminish the paracellular flux of 
small molecules in airway epithelial cells (58). 
 
7. Pancreatic Defect and CFTR 
 In general, the exocrine pancreatic disease and 
its progression correlates well with the genetic 
factors of the CF patients (1, 49). CF patients 
have been divided into two classes, pancreatic 
insufficient (PI) and pancreatic sufficient (PS) (1, 
46, 49). Approximately 85% of patients with CF 
have PI which is categorized as the “severe” CF 
phenotype, the rest of 15% are PS patients and 
thus “mild” CF phenotype. The exocrine pancreas 
in PI patients no longer secretes the required 
digestive enzymes. Therefore, CF patients often 
require an oral pancreatic enzyme supplement 
each meal (117). Pancreatic damage from CF can 
be detected in utero in subjects with PI and show 
obstruction of the small ducts and acini which will 
lead to the destruction of the pancreas with only a 
few islets or ducts left in a sea of adipose tissue 
(30). In contrast, PS-CF patients do have 
pancreatic damage, as measured by the high 
levels of serum immunoreactive trypsinogen 
(IRT), but retain normal digestion due to a 
sufficient endogenous function of exocrine 
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pancreatic ducts (30, 117). As we have mentioned 
above, CF patients are classified into six 
traditional classes from I to VI based on their 
CFTR mutations. The exocrine pancreatic 
phenotypes PI and PS are directly linked to 
genotype (1, 46, 49, 114). 
 
Wilschanski and his colleagues describe that CF 
patients homozygous or compound heterozygous 
for severe alleles belonging to classes I, II, III, or 
VI confer PI. Whereas a mild class IV or V allele 
sustains pancreatic function in a dominant fashion 
even if the second mutation is severe and falls 
into PS (117). They go further and explained that 
this observation appears plausible because all 
known mild alleles belong to class IV or V, all of 
which are (or predicted to be) associated with 
some residual chloride channel activity at the 
epithelial apical membranes (117). On the other 
hand, in a recent review by Gibson-Corley and his 
colleagues, they described the PI CF patients to 
be in the classes I, II, III, IV and VI because they 
have mutations that render CFTR to be absent or 
non-functional (30). The remainder of the patients 
belonging to class V or mild class IV considered 
PS, due to less severe CFTR mutations (30). 
 
In both reviews, it was mentioned that this 
classification of the PI and PS do not entirely fit 
into the six classes of CFTR mutations. Those 
who are considered PS still show pancreatic 
destruction as the serum level of IRT is elevated 
but will not require enzyme replacement for 
normal digestion (30). Some class I mutations 
with the stop codon at the end of the gene are CF 
patients with PS (117). In addition, a small portion 
(~3%) of CF patients with a severe mutation on 
both alleles are considered PS at diagnosis, but 
eventually transition from PS to PI (25, 117). 
Another example, G85E a missense mutation and 
few other mutations do show variable pancreatic 
phenotypes (117). PS CF patients are more 
susceptible to developing pancreatitis than the PI 
patients (25). It is known that pancreatic ducts 
have an essential part in CF and chronic 
pancreatitis, and only PS patients develop 
pancreatitis, suggesting that partially impaired the 
function of pancreatic ducts is retained in PS 
patients (38). Druno and colleagues showed that 
there is a strong correlation between genotype 
and phenotype in patients with CF and 
pancreatitis (25). They showed from a CF cohort 
study of about 1000 patients followed over a 

period of 30 years that PS CF patients carry at 
least one mild mutant allele and are at a 
significant risk of developing pancreatitis. 
Symptoms of pancreatitis may precede the 
diagnosis of CF. Pancreatitis is associated with an 
otherwise mild CF phenotype (25). A larger CF 
cohort study of about 10071 patients had reported 
that out of 331 patients with PS, 34 cases had 
pancreatitis, where the occurrence of pancreatitis 
among patients with PI was 15 cases out of 2971 
patients (21). More evidence goes toward the 
correlation of PS CF patients and the 
development of pancreatitis, with a novel 
pancreatic insufficiency prevalence score where 
they divided the patients into 3 groups: severe, 
moderate-severe, and mild, with the mild 
mutations more susceptible to the risk of 
developing pancreatitis (71, 117). The new 
classification of CFTR mutations into 31 new 
classes reflects the composite defects in mutant 
CFTR biology (108). We will need to take into 
considerations the complexity of the disease and 
the severity of the CFTR genotype and their 
relationship with risk of pancreatitis. In a very 
recent study, for example, three sibling patients 
with a novel missense mutation, the R248G in 
exon 6 of the CFTR gene, present a recurrent 
acute pancreatitis (110). A similar missense 
mutation, R248T, has been previously reported as 
a mild CFTR-RD mutation that is not associated 
with pancreatitis. The R248G mutation may alter 
the normal function of CFTR more than the 
R248T mutation based on the clinical phenotypes 
of the three patients (110). As the authors 
conclude, future structure-functional studies on 
the CFTR protein can provide further insight into 
the impact of the R248G mutation at the 
molecular level. 
 
8. CFTR Mutations and Pancreatitis 
It is very well established by now that CFTR is a 
key protein in the pancreatic duct, which regulates 
the exchange of anions between the luminal 
surface and the cytoplasm of the duct cells. As 
mentioned, in CF patients the pancreas is one of 
the first organs to fail because mutations in CFTR 
play a critical role in pancreatic pathophysiology. 
The large number of mutations known to date in 
CFTR lead scientists to tackle this complex 
disease with so many symptoms from a different 
angle, i.e.,to make a specific correlation between 
CFTR mutations with certain symptoms such as 
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pancreatitis in its both forms chronic and acute to 
determine the severity of the disease. In an 
Austrian cohort study of 133 pancreatitis patients, 
the frequency of CFTR mutations was 11.2% 
(123). In patients classified as ‘idiopathic definitive 
chronic pancreatitis,’ the frequency of mutations 
was 12.7%, whereas patients with ‘acute 
pancreatitis’ or ‘possible chronic pancreatitis’, had 
a frequency of CFTR mutations of 10% and 9.1%, 
respectively (123). The authors concluded, the 
frequency of CFTR mutations is highest in 
patients with definitive chronic pancreatitis and 
may, therefore, be regarded as a risk factor for 
the development of chronic pancreatitis (123). 
Another large Canadian CF cohort study of 2481 
subjects with PS-CF (with and without 
pancreatitis) showed some correlation between 
the severity of CFTR genotype and the risk of 
pancreatitis (71). They showed that patients 
carrying mild mutations are more likely to develop 
pancreatitis than those who had moderate -severe 
mutations (71). Therefore, patients with mild 
mutations had 71% increase in the risk of 
developing pancreatitis at any given time than 
those with moderate-severe mutations (71). Thus, 
approximately 20% of PS-CF patients develop 
pancreatitis (71). Coffey at al, in their review 
summarized the complexity of the correlation 
between the CFTR mutations and the 
development of pancreatitis by categorizing the 
mutations into four groups based on the clinical 
status of the patients: (i) CF-causing mutations, 
(ii) mutations associated with CFTR-related 
disease, (iii) mutations with no known clinical 
consequence, and (iv) mutations with unknown 
clinical relevance (15). Also, Ooi and colleagues 
found that certain diseases that resemble CF at 
an organ-specific level (e.g. pancreatitis) are also 
strongly associated with mutations in the CFTR 
gene (15, 72) In conclusion, pancreatitis in the CF 
patients and the relationship with multiple 
mutations of CFTR are very complex due to the 
multiple levels of the disease symptoms, which 
are different from mutation to another due to the 
extended classification of those different 
mutations into the 27 different classes according 
to the new classification. 
 

9. Conclusion 
In CF patients the pancreas is one of the first 
organs to fail because mutations in CFTR have a 
critical role in pancreatic pathophysiology. CFTR 
is the key regulator of the pancreatic duct that 
regulates the anion exchange between the 
luminal surface and the cytoplasm of the duct 
cells. The large number of CFTR mutations are 
leading scientists to approach an understanding 
of their functional impact from a different angle 
with the goal of making a specific correlation 
between CFTR mutations and certain symptoms 
such as PI and PS. The lack of correlation 
between the genotype and the phenotype of the 
CF patients has led to a new classification (31 
possible classes of mutations) based on the 
severity and the clinical symptoms of the CF 
patients. The pleiotropic molecular defects of a 
single mutation in CFTR has limited the effects of 
drug therapy for some mutants which have been 
categorized as class I, II, or II/IV (108). The 
expanded classification of the major mechanistic 
categories will accommodate the unusually 
complex, combinatorial molecular/ cellular 
phenotypes of CF alleles. In addition to the new 
proposed classification, one more level of 
complexity is to categorize the mutations into four 
groups based on the clinical status of the patients: 
(i) CF-causing mutations, (ii) mutations associated 
with CFTR-related disease, (iii) mutations with no 
known clinical consequence, and (iv) mutations 
with unknown clinical relevance (15). All the 
recent discoveries and the new hypothesis will 
help shed light on the complex CF disease from a 
new perspective, which will help develop a new 
combined therapy to rectify the mutation or 
mutations at different levels of CFTR defects.  
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