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1. Introduction 

While it is believed that secretory vesicles 
completely merge with the cell plasma membrane 
during secretion resulting in release of the entire 
vesicular contents, the observation of partially 
empty vesicles in cells following secretion (Figure 
1), is incompatible with complete vesicle merger, 
suggesting the presence of an additional 
mechanism involving transient fusion that allows 
partial discharge of intra-vesicular contents during 
secretion. In 1973, the mechanism of ‘transient’ or 
‘kiss-and-run’ mechanism of secretory vesicle 
fusion at the cell plasma membrane enabling 
fractional release of intravesicular contents was 
proposed (7). Then in 1990 it was hypothesized 
that the fusion pore, a continuity established 
between the vesicle membrane and the cell 
plasma membrane, results from a “preassembled 
ion channel-like structure that could open and 
close” (2). A later 1992 review opined that the 
principal difficulty in observing these structures 
and fusion pore formation at these structures, 
was the lack of ultrahigh resolution imaging tools 
to directly monitor their presence and study their 
activity in live cells (4).  
 
In the mid 1990’s, employing the then newly 
developed technique of atomic force microscopy 
(AFM), nanometer scale pore structures and their 
dynamics were discovered at the apical plasma 
membrane in live pancreatic acinar cells. Circular 
pit-like structures containing 100-180 nm cup-
shaped depressions or pores were observed at 
the apical plasma membrane of pancreatic acinar 

cells where secretion is known to occur (57). 
During secretion, the depressions or pores 
opening grew larger, returning to their resting size 
following completion of cell secretion. 

 

 
Figure 1.  Representative electron micrographs of 
resting (a), and cholecystokinin-stimulated for 15 min 
(b) rat pancreatic acinar cells, demonstrating partial 
loss of zymogen granule (ZG) contents following 
secretion. The apical lumen (L) of acini demonstrating 
the presence of microvilli and secreted products is 
observed. (c) These studies using electron microscopy 
further demonstrate that while the number of ZG 
remain unchanged following secretion, an increase in 
the number of empty and partially empty vesicles are 
observed. Scale bar = 1 μm (From Ref 10).   
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Figure 2. The volume dynamics of zymogen granules (ZG) in live pancreatic acinar cells demonstrating fractional 
release of ZG contents during secretion. (A) Electron micrograph of pancreatic acinar cells showing the 
basolaterally located nucleus (N) and the apically located electron-dense vesicles, the ZGs. The apical end of the 
cell faces the acinar lumen (L).  Bar = 2.5 µm. (B-D) Apical ends of live pancreatic acinar cells in physiological 
buffer imaged by AFM, showing ZGs (red and green arrowheads) lying just below the apical plasma membrane. 
Exposure of the cell to a secretory stimulus (1 µM carbamylcholine), results in ZG swelling within 2.5 min, followed 
by a decrease in ZG size after 5 min. The decrease in size of ZGs after 5 min is due to the release of secretory 
products such as α-amylase, as demonstrated by the immunoblot assay (E). If ZG’s had fused at the plasma 
membrane and fully merged, it would not be visible, demonstrating transient fusion and fractional discharge on 
intravesicular contents during secretion in pancreatic acinar cells (From Ref 42). 
 
Studies next established the observed 
depressions to be the secretory portals at the 
plasma membrane in cells (13, 35). Following 
stimulation of cell secretion, gold-conjugated 
amylase antibodies (amylase being one of the 
major intra-vesicular enzymes secreted by 
pancreatic acinar cells) accumulate at 
depressions. These results established 
depressions to be the long sought-after secretory 
portals in cells. The study further reported the 
presence of t-SNAREs at the porosome base 
facing the cytosol, firmly establishing depression 
structures to be secretory portals where vesicles 
transiently dock and fuse for intra-vesicular 
content release during secretion (35). 
Subsequently depressions and their dynamics at 
the cell plasma membrane in growth hormone 
(GH) secreting cells of the pituitary gland, and in 
rat chromaffin cells was reported (15). In 2003, 
following immunoisolation of the depression 
structures from acinar cells of the exocrine 
pancreas, their composition was determined, and 
they were functionally reconstituted into artificial  
lipid membranes (40). Morphological details of  

 
depressions associated with docked secretory 
vesicles were revealed using high-resolution 
electron microscopy (40). In the past decade, 
employing a combination of approaches such as 
AFM, biochemistry, electrophysiology, 
conventional EM, mass spectrometry, and small 
angle X-Ray solution scattering analysis, this 
specialized portal has been found to be present in 
all secretory cells examined, including neurons 
(18, 36, 43, 47). Therefore, these structures were 
named ‘porosomes’ (36, 43, 46) or secretory 
portals in cells. Our own studies and studies from 
other laboratories established porosomes to be 
secretory portals that perform the specialized task 
of fractional discharge of intravesicular contents 
from cells during secretion (20, 23, 26, 32, 36, 43, 
46, 49, 52, 54, 56, 61). The significance of the 
identification of the porosome is reflected by 
several publications regarding the structure and 
the associated transient fusion mechanism by 
fractional discharge of intravesicular contents 
from cells (3, 20, 23, 26, 32, 49, 52, 54, 56, 61, 
68, 69).  
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It has been demonstrated in exocrine, endocrine, 
and neuronal cells that “secretory granules are 
recaptured largely intact following stimulated 
exocytosis in cultured endocrine cells” (68); that 
“single synaptic vesicles fuse transiently and 
successively without loss of identity” (3); and that 
“zymogen granule exocytosis is characterized by 
long fusion pore openings and preservation of 
vesicle lipid identity” (44, 69). The past two 
decades have witnessed great progress in our 
understanding of Ca+2 and SNARE-mediated 
membrane fusion and on secretory vesicle 
volume regulation required for regulated fractional 
release of intravesicular contents from cells 
during secretion (4, 6, 8, 9, 12, 14, 16, 17, 19, 21, 
24, 29-31, 34, 37, 38, 39, 41, 42, 45, 48, 50, 51, 
55, 58, 59, 62, 64, 66, 70, 72-74). These findings 
have greatly contributed to the progress in our 
understanding of the involvement of porosomes in 
the secretory process. 
 
2. Discovery of the Porosome  

The porosome was first discovered in acinar cells 
of the rat exocrine pancreas nearly 17 years ago 
(57). This discovery was made possible by the 
use of a then new microscope, the atomic force 
microscope (AFM) (1,5). In AFM, a probe tip 
micro fabricated from silicon or silicon nitride and 
mounted on a cantilever spring is used to scan 

the surface of the sample at a constant force. 
Either the probe or the sample can be precisely 
moved in a raster pattern using a xyz piezo to 
scan the surface of the sample.  The deflection of 
the cantilever measured optically is used to 
generate an isoforce relief of the sample (5, 71). 
Force is thus used by the AFM to image surface 
profiles of objects at nanometer resolution and in 
real time, objects such as live cells, subcellular 
organelles, and even biomolecules, submerged in 
physiological buffer solutions. 
 
Exocrine pancreatic acinar cells are polarized 
secretory cells possessing an apical and a 
basolateral end. Pancreatic acinar cells 
synthesize digestive enzymes, which are stored 
within 0.2-1.2 μm in diameter apically located 
membranous sacs or secretory vesicles, called 
zymogen granules (ZGs). Following a secretory 
stimulus, ZGs dock and fuse with the apical 
plasma membrane to release their contents to the 
outside. As opposed to neurons where secretion 
of neurotransmitters occur within millisecond of a 
secretory stimulus, pancreatic acinar cells secrete 
digestive enzymes over several minutes following 
a stimuli, and therefore was chosen as a model 
system to dissect out the various steps involved in 
cell secretion. AFM studies of the structure and 
dynamics of the apical plasma membrane in both 
resting and stimulated live pancreatic acinar cells, 
demonstrate the presence of new cellular 
structures at the apical plasma membrane of the 
cell where secretion is known to occur (57). At the 
apical plasma membrane, a group of circular ‘pits’ 
measuring 0.4–1.2 μm in diameter, contain 
smaller 100-180 nm in diameter ‘depressions’ 
structures are identified (Figure 3). Typically 3–4 
depressions are found within each pit structure, 
and interestingly the basolateral cell membrane is 
devoid of such pit and depression structures (57). 
High-resolution AFM images of depressions in 
live acinar cells further reveal a cone-shaped 
basket-like morphology, each cone measuring 
15–35 nm in depth. View of the porosome 
structure at the cytosolic compartment of the 
plasma membrane in the exocrine pancreas has 
also been determined at near nm resolution in live 
cells (Figure 4) (40). To determine the 

Figure 3. To the left is an AFM micrograph of the 
apical plasma membrane of a live pancreatic 
acinar cell demonstrating the presence of a pit 
(yellow arrow) with porosomes within (blue arrow).  
To the right is a schematic drawing demonstrating 
pits and cup-shaped porosomes where zymogen 
granules (ZG), the secretory vesicles in exocrine 
pancreas dock and transiently fuse to release 
intra-vesicular digestive enzymes from the cell 
(From Ref 57). 
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morphology of porosomes at the cytosolic 
compartment in pancreatic acinar cells, isolated 
plasma membrane preparations in near 
physiological buffered solution, have been imaged 
at ultrahigh resolution using the AFM (Figure 4) 
(40). As demonstrated in the AFM surface 
topology study, study of inside-out acinar cell 
plasma membrane preparations reveal scattered 
circular disks (pits) measuring 0.5–1 μm in 
diameter, with inverted cup-shaped structures 
(depressions or porosomes) within (40). On a 
number of occasions, ZGs ranging in size from 
0.4–1 μm in diameter are observed in association 
with one or more of the inverted cups, suggesting 
the circular disks to represent pits, and inverted 
cups porosomes (Figure 4) (40). Porosomes in 
acinar cells of the exocrine pancreas have also 
been examined using high-resolution 
transmission electron microscopy (TEM) (Figures 
5 and 6), both in isolated cells and tissues 
(Figure 5), and in association with ZGs prepared 
from stimulated acinar cells (Figure 6) (20, 34, 39, 
71). In Figure 5, the electron micrograph of a 
depression or porosome sectioned at a certain 
angle depicts its distinct and separate bilayer, and 
the bilayer attachment of the associated ZG. A 
cross section through three lateral knob-like 

structures that circle around the porosome cup, 
are clearly delineated. The apical knob-like 
density at the lip of the porosome, appear most 
prominent. The TEM micrograph further 
demonstrates that the lower knob, likely 
represents the t-/v-SNARE ring or rosette 
complexes formed as a result of ZG membrane 
fusion at the base of the porosome. 
 
Exposure of pancreatic acinar cells to a 
secretagogue results in a time-dependent 
increase (20–45%) in both the diameter and 
relative depth of depressions (Figure 7). 
Porosomes return to resting size on completion of 
cell secretion (13, 57). No demonstrable change 
in pit size is detected following stimulation of 
secretion (57). Enlargement of porosome 
diameter and an increase in its relative depth, 
following exposure to a secretagogue correlates 
with secretion (Figure 7,8). Additionally, exposure 
to cytochalasin B, a fungal toxin that inhibits actin 
polymerization and secretion, results in a 15–20% 
decrease in porosome size and a consequent 50–
60% loss in cell secretion (57). These results 
suggested depressions or porosomes to be the 
secretory portals in pancreatic acinar cells.

 
 
Figure 4. AFM micrograph showing cup-shaped depression or porosome structures at the pancreatic acinar cell 
plasma membrane. (a) Several circular ‘‘pits’’ (yellow arrowheads) with depressions or porosomes (red 
arrowheads) are seen in this AFM micrograph of the apical plasma membrane in live pancreatic acinar cell. (b) 
AFM micrograph of the cytosolic compartment of isolated pancreatic plasma membrane preparation depicting a 
‘‘pit’’ (yellow arrowheads) containing several inverted cup-shaped porosomes (red arrowhead) within. ZG (blue 
arrowhead) is found associated with porosomes in figures c and d. (c) The ‘‘pit’’ and inverted fusion pores in b is 
shown at higher magnification. (d) AFM micrograph of another ‘‘pit’’ with inverted fusion pores within, and 
associated with a ZG, is shown. Bar = 200 nm. (From Ref 40). 
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Figure 5. Transmission electron micrograph of a porosome associated with a docked secretory vesicle at the 
apical end of a pancreatic acinar cell. (a) Part of the apical end of a pancreatic acinar cell demonstrating within the 
green square, the presence of a porosome and an associated zymogen granule (ZG) fused at its base. (Bar=400 
nm only in figure a). (b) The area within the green square in figure a, has been enlarged to show the apical 
microvilli (MV) and a section through the porosome and the ZG. Note the ZG membrane (ZGM) bilayer is fused at 
the base of the porosome cup. (c) A higher magnification the porosome-associated ZG shows in greater detail the 
porosome bilayer and cross section through the three protein rings (which appear as knobs in either side of the 
cup-shaped porosome), with the thicker ring (blue arrowhead) present close to the opening of the porosome to the 
outside, which may regulate the closing and opening of the structur. The third and the lowest ring away from the 
porosome opening is attached to the ZGM, and may represent the t-/v-SNARE rosette or ring complex. (d) Yellow 
outline of the ZG fused porosome complex (FP) demonstrating the continuity with the apical plasma membrane 
(PM) at the apical end of the pancreatic acinar cell facing the lumen (L). The exact points of contact and fusion of 
the ZGM with the membrane at the porosome base is clearly seen in the micrograph. (From Ref 40). 

 
Figure 6. Transmission electron micrographs of zymogen granules (ZGs) co-isolated with porosomes. (a) 
Porosome associated at the surface of ZGs are shown. (Bar=120 nm; top panel only). (b) At higher magnification 
details of the porosome complex demonstrating the presence of separate plasma membrane (PM) and the ZG 
membrane (ZGM). Note the apically arranged ring complex of the porosome, similar to what is observed in 
electron micrographs of the structure in intact cells as presented in figure 5. These ZG-associated porosomes are 
torn off the cell plasma membrane and hence have very little membrane. Hence the porosome proteins lining the 
porosome cup appear as frills in the electron micrograph. Note the ZG size compared to the porosome structure. 
(From Ref 40). 
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Figure 7. Dynamics of depressions following stimulation of secretion in live pancreatic acinar cell examined using 
AFM. (a) Several depressions within a pit are shown in the AFM micrographs. The scan line across three 
depressions in the top panel is represented graphically in the middle panel and defines the diameter and relative 
depth of three depressions; the depression to the center is labeled using red arrowheads. The bottom panel shows 
% total cellular amylase release in the presence (blue bars) and absence (green bars) of the secretagogue Mas7. 
(b) Note the increase in depression diameter and relative depth, correlating with an increase in total cellular 
amylase release at 5 min after stimulation of secretion. (c) At 30 min after stimulation, there is a decrease in 
diameter and depth of the depressions and no further increase in amylase release over the 5-min time point is 
seen. No significant changes in amylase secretion or depression diameter were observed in control acini, in either 
the presence or the absence of the non-stimulatory mastoparan analogue Mas17, throughout the times examined. 
High-resolution images of pits and their depressions were obtained before and after stimulation with Mas7, for up 
to 30 min (From Ref 57). 

 
Figure 8. Changes are observed only in depressions or porosomes following stimulation of secretion. Analysis of 
the dimensions a–d, schematically represented at the top and graphically presented below, demonstrates a 
significant increase in the depression diameter at 5 min and a return toward prestimulatory levels after 30 min. No 
changes (100%) in a–c are seen throughout the times examined. Pit and depression diameters were estimated 
using section analysis software from Digital Instruments. Each single pit or depression was measured twice, once 
in the scan direction and once at 90° to the first (From Ref 57). 
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Figure 9. Intravesicular contents are expelled to the outside through the porosome during cell secretion. (A and B) 
AFM micrograph and section analysis of a pit and two of the four depressions or porosomes, demonstrating 
enlargement of porosomes following stimulation of cell secretion in the acinar cell of the exocrine pancreas. (C) 
Exposure of live cells to gold conjugated-amylase antibody (Ab) results in specific localization of gold particles to 
these secretory sites. Note the localization of amylase-specific 30 nm immunogold particles at the edge of 
porosomes. (D) AFM micrograph of pits and porosomes with immunogold localization demonstrated in cells 
immunolabeled and then fixed. Blue arrowheads point to immunogold clusters and the yellow arrowhead points to 
a depression or porosome opening. (From Ref 13). 
 

  
Figure 10. AFM and immune-AFM micrographs of the pancreatic acinar cell porosome demonstrating pore 
morphology and the release of secretory products at the site. (a) A pit with four porosomes within, found at the 
apical surface in a live pancreatic acinar cell; (b) After stimulation of secretion, amylase-specific immunogold 
localize at the pit and porosomes within, demonstrating them to be secretory release sites; (c) Some porosomes 
demonstrate greater immunogold localization, suggesting more release through them; (d) AFM micrograph of a 
single porosome in a live acinar cell (From Ref 35).    
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Figure 11. Immuno-AFM of the cytosolic compartment of the porosome complex demonstrate the presence of the 
t-SNARE SNAP-23 at the porosome base. (a) AFM micrograph of isolated plasma membrane preparation reveals 
the cytosolic compartment of a pit with inverted cup-shaped porosomes. Note the 600 nm in diameter docked ZG 
to the left. (b) Higher magnification of the same pit demonstrates the presence of 4–5 porosomes within. (c) A 
single porosome is depicted in this AFM micrograph. (d) Western blot analysis of 10 μg and 20 μg of pancreatic 
plasma membrane preparations using SNAP-23 antibody demonstrates a single 23 kDa immunoreactive band. (e 
and f) The cytosolic side of the plasma membrane demonstrates the presence of a pit with a number of 
porosomes within, shown before (e) and after (f) addition of the SNAP-23 specific antibody. Note the increase in 
height of the porosome base revealed by section analysis (bottom panel), demonstrating localization of SNAP-23 
antibody to the base of the porosome (From Ref 35). 
    
Results from these studies further demonstrate 
the involvement of actin in regulation of both the 
structure and function of porosomes. To further 
demonstrate porosomes to be secretory portals, 
required the direct observation of the release of 
secretory products through the structure. This 
was accomplished using immuno-AFM studies in 
exocrine pancreas (Figure 9,10) where gold-
conjugated amylase-specific antibody was 
demonstrated to selectively localize at the mouth 
of depression or porosome opening to the cell 
exterior, following stimulation of secretion (13, 35). 
 
To further confirm that the cup-shaped structures 
are porosomes, where secretory vesicles dock 
and fuse, additional immuno-AFM studies have 
been performed (35). Since ZGs dock and fuse at 
the plasma membrane to release vesicular 

contents, it was hypothesized that if the inverted 
cups or porosomes are the secretory portals, then 
plasma membrane-associated t-SNAREs should 
localize at the structure. The t-SNARE protein 
SNAP-23 is present in pancreatic acinar cells (35). 
A polyclonal monospecific SNAP-23 antibody 
recognizing a single 23 kDa protein in Western 
blots of pancreatic plasma membrane fraction, 
when used in immuno-AFM studies, 
demonstrated selective localization to the base of 
the porosome (Figure 11) (35). These results 
establish that the inverted cup-shaped porosome 
structures in inside-out pancreatic plasma 
membrane preparations are indeed secretory 
portals where secretory vesicles transiently dock 
and fuse to release their contents during cell 
secretion. 
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Figure 12. Negatively stained EM and AFM of the 
immunoisolated porosome complex from exocrine 
pancreas. (a) Negatively stained EM of an 
immunoisolated porosome complex from solubilized 
pancreatic plasma membrane preparation using a 
SNAP- 23 specific antibody. Note the three rings and 
the 10 spokes that originate from the inner ring. This 
structure represents the protein backbone of the 
pancreatic porosome complex. Bar=30 nm. (b) EM of 
the isolated porosome complex cut out from figure a, 
and (c) an outline of the structure presented for clarity. 
(d–f) AFM micrograph of an isolated porosome 
complex in physiological buffer solution. Bar=30 nm. 
Note the structural similarity of the complex when 
imaged either by EM (g) or AFM (h). The EM and AFM 
micrographs are superimposable (i). (From Ref 40). 

 

Figure 13. Electron micrographs of reconstituted 
porosome complex into liposomes, demonstrate a cup-
shaped basket-like morphology. (a) A 500-nm vesicle 
with an incorporated porosome complex is shown. Note 
the spokes in the complex. The reconstituted complex 
at higher magnification is shown in b–d. Bar=100 nm. 
(From Ref 42). 

 
Figure 14. Functional reconstitution of the pancreatic 
porosome complex. (a) Schematic drawing of the 
EPC9 bilayer setup for electrophysiological 
measurements. (b) Zymogen granules (ZGs) added to 
the cis compartment (left) of the bilayer fuse with the 
reconstituted porosomes, as demonstrated by the 
increase in capacitance (red trace) and current (blue 
trace) activities, and a concomitant time dependent 
release of amylase to the trans compartment of the 
bilayer. The movement of amylase from the cis to the 
trans compartment in the EPC9 setup was determined 
by Western blot analysis of the contents in the cis and 
the trans chamber over time. (c) Electrical 
measurements in the presence and absence of 
chloride ion channel blocker DIDS, demonstrate the 
presence of chloride channels in association with the 
complex, and its requirement in porosome function. 
(From Ref 42). 
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Figure 15. Schematic diagram depicting the transient docking and fusion of secretory vesicles at the porosome 
base in the cell plasma membrane, increase in turgor pressure of  secretory vesicles via the entry of water and 
ions through water channels called aquaporins (AQP) and ion channels, expulsion of vesicular contents via the 
porosome to the outside, and the dissociation of the partially empty secretory vesicles from the porosome complex 
at the cell plasma membrane. (From Ref 47). 
 

Immunoisolation studies using SNAP-23 specific 
antibody on solubilized pancreatic plasma 
membrane fractions demonstrate the isolation of 
the porosome complex as assessed both 
structurally (Figure 12,13) and functionally 
(Figure 14) (40). Furthermore, immunochemical 
characterization of the pancreatic porosome 
complex demonstrates the presence of SNAP-23, 
syntaxin 2, actin, fodrin, vimentin, chloride 
channels CLC2 and CLC3, calcium channels β3 
and α1c, and the SNARE regulatory protein NSF, 
among other proteins (35,36). 
 
Transmission electron micrographs of pancreatic 
porosomes reconstituted into liposomes, exhibit a 
150–200 nm cup-shaped basket-like morphology 
(Figure 13), similar to its native structure 
observed in cells and when co-isolated with ZG 
preparation (40). To test the functionality of the 
immunoisolated porosome complex, purified 
porosomes obtained from exocrine pancreas 
have been reconstituted in the lipid membrane of 
the electrophysiological bilayer setup, and 
exposed to isolated ZGs (Figure 14).  Electrical 
activity of the porosome-reconstituted membrane 
as well as the transport of vesicular contents from 
the cis to the trans compartments of the bilayer 

chambers when monitored, demonstrate that the 
lipid membrane-reconstituted porosomes are 
indeed functional, since in the presence of 
calcium, isolated secretory vesicles dock and fuse 
to transfer intravesicular contents from the cis to 
the trans compartment of the bilayer chamber 
(Figure 14). ZGs fusion and content release 
through the reconstituted porosome is 
demonstrated by the increase in capacitance and 
conductance, and a time-dependent transport of 
the ZG enzyme amylase from cis to the trans 
compartment of the bilayer chamber. Amylase is 
detected using immunoblot analysis of the buffer 
in the cis and trans compartments of the bilayer 
chambers.  Chloride channel activity present in 
the porosome complex is critical to porosome 
function, since the chloride channel blocker DIDS 
is inhibitory to the reconstituted porosome 
(Figure 14).  Recent studies (28) demonstrate the 
interaction between the cystic fibrosis 
transmembrane conductance regulator (CFTR) 
and the porosome complex in human airways 
epithelia. CFTR being a chloride selective ion 
channel, its role on the quality of mucus secretion 
via the porosome complex at the cell plasma 
membrane of the airways epithelia is implicated 
from the study. Similarly in cystic fibrosis, 
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dysfunction of the CFTR is known to reduce 
secretory activity of the tubular duct cells (25) 
which leads to blockage of the ductal system and 
eventual fibrosis of the entire gland. This is just 
one examples of diseases resulting from 
alterations in a porosome-associated proteins.  
 
In summary, these studies demonstrate that the 
power and scope of the AFM enabled the 
discovery of the porosome (27, 57, 67), first in 
acinar cells of the exocrine pancreas, and later in 
other cell types including neurons. Porosomes are 
permanent supramolecular lipoprotein structures 
at the cell plasma membrane in pancreatic acinar 
cells, where membrane-bound secretory vesicles 
called zymogen granules or ZGs transiently dock 
and fuse to release intravesicular contents to the 
outside. A schematic drawing (33, 47) of 
porosome-mediated fractional discharge of 
intravesicular contents during cell secretion is 
presented in figure 15. As opposed to the 
complete merger of secretory vesicles at the cell 
plasma membrane (a all or none mechanism), the 
porosome complex prevents secretory vesicle 

collapse at the cell plasma membrane and 
provides precise regulation of content release 
during secretion. Whether secretion involves the 
docking and fusion of a single vesicle or 
compound exocytosis where a docked vesicle 
may have a number of vesicles fused to it, the 
porosome would provides specificity and 
regulation of content release. It is speculated that 
following partial discharge of intravesicular 
contents, the partially empty vesicle may undergo 
one to several docking-fusion-release cycles until 
empty of contents, prior to recycling through 
endosome-Golgi and or the endosome-lysosome-
Golgi pathway. A better understand the molecular 
structure and control of the porosome complex is 
required before therapeutic targets could be 
developed to help ameliorate its secretory 
dysfunction. Therefore understanding the 
distribution of constituent proteins within the 
complex is required, which is in progress using 
small angle X-ray solution scattering (43), 
chemical cross linking followed my mass 
spectrometry (47), immuno-EM, immuno-AFM, 
and  single particle cryo electron tomography. 
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