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I. The Dual Nature of the Pancreas 

The pancreas is a complex gland active in 
digestion and metabolism through secretion of 
digestive enzymes from the exocrine portion and 
hormones from the endocrine portion. The 
exocrine pancreas, which accounts for more than 
95-98% of the pancreas mass (43), is structurally 
comprised of lobules, with acinar cells surrounding 
a duct system. The endocrine pancreas makes up 
only 2% of the pancreatic mass and is organized 
into the islets of Langerhans— small semi-
spherical clusters of about 1500 cells (73) 
dispersed throughout the pancreatic 
parenchyme— which produce and secrete 
hormones critical for glucose homeostasis.  The 
existence of islets was described by Paul 
Langerhans in 1869, and the functional role of 
islets in glucose homeostasis was first 
demonstrated in 1890 when Joseph von Mering 
and colleagues showed that dogs developed 
diabetes mellitus following pancreatectomy (22). 
Though islet mass may vary between individuals—
an example is the increase in the setting of adult 
obesity (83)— the average adult human pancreas 
is estimated to contain one to two million islets (33, 
94). In humans, the concentration of islets is up to 
two times higher in the tail compared to the head 
and neck.  However, the cellular composition and 
architectural organization of cell types within the 
islets is preserved throughout the pancreas (103). 

 
Each pancreatic islet is composed of α, β, δ, ε and 
PP cells; these are primarily endocrine (hormone-
secreting) cells, containing numerous secretory 
granules with stored hormone molecules, ready for 
release upon receipt of the appropriate stimulus. 
Insulin-producing β cells are the most common cell 
type, making up 50-70% of islet mass, with small 
islets containing a greater percentage of β-cells in 
contrast to moderate or large islets (4,5). β cells 
were first discovered in 1907 by silver staining (50) 
and were the second islet cell type discovered, 
thus designated “β”-cells. In addition to insulin, β 
cells also produce islet amyloid polypeptide 
(IAPP), or amylin, which is packaged and released 
within insulin-containing granules (44). Amylin 
reduces post-prandial hyperglycemia by slowing 
gastric emptying and promoting satiety.  

Glucagon-producing α cells were discovered 
before β cells, by alcohol fixation, thereby 
garnering their name “α” –cells (50). As the second 
most abundant islet cell type, they make up about 
35% of islet mass in humans (8) but less in rodents. 
Glucagon’s primary function is to prevent 
hypoglycemia by stimulating glycogenolysis and 
hepatic gluconeogenesis (6). Somatostatin-
producing δ cells comprise less than 10% of islet 
mass, and are evenly distributed throughout the 
pancreas (1). Somatostatin is an inhibitory peptide 
hormone, inhibiting both endocrine and 
gastrointestinal hormones. Pancreatic polypeptide 
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(PP) producing cells, also known as Ɣ or “F” cells 
(43, 79), comprise less than 5% of islet mass, and 
like α cells, are most prominent in the head of the 
pancreas. PP has roles in exocrine and endocrine 
secretion functions of the pancreas (107). Ghrelin-
producing ε cells are the last discovered islet 
endocrine cell type. Although present in islets, 
ghrelin is predominately produced in the stomach; 
ghrelin suppresses insulin release, and plays a role 
in regulating energy homeostasis (101).  

The close proximity of the acini and the islets of 
Langerhans mirrors their functional interplay. The 
anatomic structure of the pancreatic parenchyme 
allows for a paracrine effect of the islet hormones 
on adjacent acinar cells, termed the ‘islet-acinar’ 
axis (2, 108). Notably, the islets are highly 
vascularized—receiving 15% of pancreatic arterial 
blood flow despite composing only 2% of the 
pancreatic mass (41). Via the islet-acinar portal 
system, blood bathing the pancreatic islets flows 
into a capillary bed within the pancreatic acini, thus 
exposing the acinar pancreas to the islet hormones 
(66). Insulin binds to an insulin receptor on acinar 
tissue and potentiates amylase secretion (109). In 
contrast, somatostatin inhibits pancreatic exocrine 
secretion (64); endogenous PP is also largely 
noted to inhibit pancreatic exocrine secretion (90, 
107). Studies have been inconsistent with regards 
to the effect of glucagon, some suggesting a 
stimulatory effect while many suggesting an 
inhibitor effect of glucagon on secretion of 
zymogen granules (2). 

II. Insulin Structure 

The hormone insulin was first isolated in the 1920’s 
by Dr. Frederick Banting and a medical student 
Charles Best, garnering Banting (jointly with John 
James Rickard Macleod) the Nobel Prize in 
Medicine in 1923. This was a critical step forward 
in diabetes care, as porcine insulin therapy was 
then made available for human use to treat type 1 
diabetes, an otherwise fatal disease. In the 1950’s 
Frederick Sanger determined its primary amino 
acid structure, consisting of an A and a B chain 
connected by disulfide bonds (40, 84). Ten years 

following this discovery, these chains were found 
to be from the same polypeptide precursor, 
preproinsulin. In the 1960’s Dorothy Hodgkin 
defined its tertiary structure. During translation of 
preproinsulin from its mRNA, the N-terminal signal 
peptide is cleaved to yield proinsulin. The 
proinsulin molecule is a single chain polypeptide 
containing both the A-chain (21 amino acids long) 
and the B-chain (30 amino acids long). In 
proinsulin, two chains are connected by C-peptide, 
which is cleaved to release C-peptide and the 
remaining insulin molecule, which contains the A- 
and B-chains connected via two disulfide bonds 
(40). Although insulin and C-peptide are co-
released from β cell secretory vesicles into 
circulation (81), only insulin is biologically active in 
regulating blood glucose. C-peptide, however, can 
serve as a useful clinical and research measure of 
endogenous insulin production, in patients 
receiving exogenous insulin injections. 

III. Insulin Gene Transcription 

The insulin gene on chromosome 11 is primarily 
expressed in pancreatic β cells, but is expressed in 
low levels in the brain, thymus, and in the yolk sak 
during fetal development (28, 52, 72). It has three 
exons and two introns, and its transcription results 
in the 446 base pair preproinsulin mRNA (Figure 
1). 

Transcription of the insulin gene to preproinsulin 
mRNA is sophisticated and reflects the tight 
regulation by transcription factors and recruited 
coactivators. Pdx-1, NeuroD1 and MafA are 
important transcription factors in β cell function, 
respond to elevated glucose levels. Individual β 
cells respond to ambient glucose with differential 
insulin secretion, and these changes are apparent 
at the level of gene transcription (16). At the level 
of the islet, rapid increase in blood glucose results 
in rapid elevation in preproinsulin mRNA in the 
endocrine pancreas. A rapid decrease in blood 
glucose results in a slow decline in preproinsulin 
mRNA.  
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Figure 1. Various levels of glucose regulation of insulin gene expression. Glucose stimulates nuclear 
translocation of Pdx-1; promotes Pdx-1 and MafA phosphorylation and binding to the insulin promoter; and 
stimulates transcription of the insulin gene, pre-mRNA splicing, translation, and mRNA stability. (Used with 
permission from (74)). 

This is due to the unusual stability of preproinsulin 
mRNA, further stabilized by increased glucose 
concentrations (25). The specific regulation of this 
molecule’s translation is the primary mechanism of 
insulin production control (74). 

Mature insulin-containing granules are retained 
from a few hours up to several days within the β 
cell, ready for transport to plasma membrane and 
exocytosis when stimulated. The storage of insulin 
in mature β granules is far greater than that 
secreted (58, 80). During a 1 hour glucose 
stimulation only ~1-2% of insulin within a primary 
islet β cell is released (102). The insulin content 
within a given β cell remains relatively constant in 
the short term, but in the long term will adapt in 
response to physiologic demands (102). 

IV. Insulin Function 

In an evolutionary milieu of sporadic access to 

nutrients, insulin became critical in facilitating 
survival. As an anabolic hormone, insulin controls 
metabolism of carbohydrates, lipids, and protein. It 
mediates the availability of energy sources in both 
fasting and fed states. Insulin promotes energy 
storage in the fasting state and energy utilization 
and uptake in the fed state (Table 1). In so doing, 
it maintains serum glucose levels within a narrow 
physiologic range despite variation in energy 
intake and expenditure.  Insulin acts at extracellular 
insulin receptors in multiple organ tissues including 
the liver, muscle, and adipose tissue (43), and its 
effect depends on interstitial insulin concentration 
which is influenced by insulin secretion rate from β 
cells and clearance from circulation (68). 

The liver serves as the primary storage site for 
glucose, accounting for 80% of glucose production 
in fasting states with the kidney only contributing 
20% (18, 96).  
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Table 1. Endocrine Effects of Insulin 
Tissue Effect of Insulin 
Liver Catabolic Pathways 

          Inhibits glycogenolysis 
          Inhibits conversion of fatty acids and amino acids to keto acids 
          Inhibits conversion of amino acids to glucose 
Anabolic Pathways 
          Promotes glucose storage as glycogen (induces glucokinase and glycogen 
synthase, inhibits phosphorylase) 
          Increases triglyceride synthesis and VLDL formation 

Muscle Protein Synthesis 
          Increases amino acid transport 
          Increases ribosomal protein synthesis 
Glycogen Synthesis 
          Increases glucose transport 
          Induces glycogen synthetase 
          Inhibits phosphorylase 

Adipose 
Tissue 

Triglyceride Storage 
          Lipoprotein lipase is induced by insulin to hydrolyze triglycerides in 
circulating lipoproteins for delivery of fatty acids to the adipocytes 
          Glucose transport into cell provides glycerol phosphate to permit 
esterification of fatty acids supplied by lipoprotein transport 
          Intracellular lipase is inhibited by insulin 

Brain Decreased appetite 
 
Increased energy expenditure 

      (Adapted from Masharani and German (60)). 
 
To preserve glucose stores, the low insulin 
concentrations in the portal venous blood—as 
seen in the fasting state-- allows minimal glucose 
production, only enough to match the needs of 
essential glucose-dependent tissues including the 
red blood cells and the central and peripheral 
nervous systems. The liver also clears insulin more 
rapidly in the fasting state, thus maintaining low 
circulating insulin levels. Low insulin 
concentrations also contribute to lipolysis in 
adipocytes, releasing free fatty acids to encourage 
utilization of lipid over glucose to meet resting 
energy needs. Hepatic glucose release during 
fasting states through glycogenolysis and 
gluconeogenesis is stimulated by counter-
regulatory, or ‘anti-insulin’ hormones. Glucagon 
plays a major role, with synergistic effects from 
catecholamines, cortisol, and growth hormone 

(68). 

By contrast, in the fed state-- in response to 
digestion and absorption of nutrients-- circulating 
insulin concentration increases in the portal vein 
secondary to insulin secretion from pancreatic β 
cells. The increased insulin and glucose 
concentrations normally limit hepatic glucose 
production and stimulate liver glucose uptake 
through glycogen deposition (23, 32, 91). Insulin 
causes upregulation of hexokinase, 
phosphofructokinase, and glycogen synthase 
within hepatocytes, thus inhibiting glycogenolysis 
and gluconeogenesis and stimulating glycogen 
synthesis (18).  

The effect of insulin on gluconeogenesis can be 
direct (via its effect on the liver) or indirect via its 
effect on islet α cells (by decreasing glucagon 
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secretion), adipose tissue (by suppressing 
lipolysis), skeletal muscle (by reducing 
proteolysis), and the brain (pleiotropic effect) (32, 
65). 

In situations when there is poor insulin response 
such as type 2 diabetes mellitus or insulin 
resistance, the process of gluconeogenesis 
continues even in the fed state, thus, further 
compounding hyperglycemia (32).  

Figure 2. Glucose homeostasis in the fed state. Glucose absorbed from the digestive tract enters the portal 
blood flow and then systemic circulation. In the fed state, increased glucose stimulates insulin release from the 
pancreatic β-cells. Insulin acts at the level of the liver to inhibit hepatic gluconeogenesis, at the skeletal muscle to 
promote storage of glucose as glycogen, and in the adipocytes to stimulate lipogenesis. High insulin levels inhibit 
the release of non-esterified fatty acids. Incretin hormones released from small intestine in response to a meal 
augment pancreatic glucose-stimulated insulin secretion. Brain and red blood cells take up glucose independently 
of insulin in the fasting and fed state. In the fasting state (not shown), in the setting of low circulating insulin, hepatic 
gluconeogenesis, glycogenolysis, and release of non-esterified fatty acids occurs. Solid line stimulation; dashed 
lines denote inhibition. 

Liver clearance of insulin is decreased in the fed 
state, thus further increasing the circulating insulin 
concentration. In adipocytes, insulin upregulates 
lipoprotein lipase and downregulates hormone 
sensitive lipase, which inhibits lipolysis and 
subsequent free fatty acid release (29). In 
hepatocytes, insulin instead stimulates hepatic free 
fatty acid synthesis from glucose, thereby 
increasing lipid stores. Proteolysis of skeletal 
muscle is also inhibited by insulin, which along with 
lipolysis inhibition, limits delivery of glucose 
precursors (glycerol and amino acids) to the liver. 
Systemic circulation of insulin stimulates glucose 

uptake and utilization in skeletal muscle and 
adipocytes.  

In summary, the release of insulin in the fed state, 
(1) promotes accumulation of energy stores 
through glycogenesis and lipogenesis, (2) reduces 
new hepatic glucose output by preventing 
glycogenolysis and gluconeogenesis (in the non-
insulin resistant, non-diabetic individual), and (3) 
promotes uptake of glucose by skeletal muscle and 
fat, the net effect of which is to maintain a normal 
circulating serum glucose levels while storing extra 
energy for use during later periods of fasting 
(Figure 2).
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Table 2.  Most common glucose transporters (GLUT) in human tissues 
Glucose Transporter Insulin sensitivity Tissue(s) 
GLUT-1 Insulin -independent RBCs; blood brain barrier; more recently identified in 

human β-cell 
GLUT-2 Insulin -independent β-cell; kidney, liver, intestinal cells 
GLUT-3 Insulin -independent Blood-brain barrier, placenta 
GLUT-4 Insulin -dependent Skeletal muscle, smooth muscle, cardiac muscle, 

adipocytes 
 
Glucose movement into cells is made possible by 
specific protein transporters within the plasma 
membrane of glucose-responsive cells that 
reversibly bind glucose and transport it 
bidirectionally across the cell membrane. There 
are 14 known glucose transporters (GLUTs) (56, 
99). They are present in different concentrations 
and in different tissues, with varying sensitivity to 
insulin (Table 2). 

Tissues such as muscle and adipocytes carry the 
insulin-dependent glucose transporter GLUT-4 and 
uptake of glucose into these tissues occurs only 
under conditions of adequate circulating insulin. In 
contrast, vital organs such as red blood cells, brain, 
placenta, and kidney carry insulin-independent 
glucose transporters. Thus, these latter essential 
organs can continue to function even in states of 
insulin deficiency. β-cells also depend upon on a 
glucose-independent transporter, GLUT2, to allow 
ambient blood glucose to freely transverse the β-
cell membrane in order to stimulate insulin 
production. 

V. Insulin Secretory Pathway 

The pancreatic β-cells act as a self-contained 
system to secrete insulin in response to changes in 
ambient blood glucose concentration, in order to 
maintain glucose homeostasis. Glucose is freely 
taken up into the β-cell via GLUT transporters, 
metabolized to produce ATP, which triggers a 
cascade of signals within the β cell necessary for 
glucose-induced insulin secretion.  While GLUT2 
has been traditionally assumed as the major 

mediator of glucose uptake into β-cells based on 
extrapolation from rodent studies and subsequent 
confirmation of GLUT2 transporters on human β-
cells (17, 71, 100), more recent studies in human 
islets suggest that the other insulin-independent 
glucose transporters GLUT1 and GLUT3 play a 
more important role, and are the main glucose 
transporters in human islet β-cells (3, 98). This 
redundancy explains why individuals with variants 
in the gene encoding GLUT2 (SLC2A2 mutations, 
or Fanconi–Bickel syndrome) do not have 
significant abnormalities in insulin secretion (89). 

As blood glucose increases (e.g., after a meal), 
there is a resultant flux of glucose across the GLUT 
transporters in the β-cell. Subsequently, within the 
β-cell, glucose is phosphorylated to glucose-6-
phosphate by glucokinase. This is the rate-limiting 
step of insulin secretion, and as such, glucokinase 
is considered the “glucose sensor” for the β-cell 
(17, 61). Because of this critical role of 
glucokinase, individuals with heterozygous 
mutations in the glucokinase gene have a mild to 
moderate non-progressive hyperglycemia 
(maturity onset of diabetes in the young, type 2) 
(12). Once in the mitochondria, glucose-6-
phosphate is metabolized by the Krebs cycle to 
produce ATP. The resultant ATP binds and closes 
the ATP-dependent potassium channel, a pore 
across the cell membrane, which consists of four 
Kir6.2 subunits and has four regulatory SUR 
(sulfonylurea receptor) subunits. Channel closure 
blocks potassium exit from the β-cell, thus 
depolarizing the cell membrane.  
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Figure 3.  Glucose stimulated insulin-secretion coupling in the β cell. The main pathway of glucose stimulated 
insulin secretion in the beta cell. Glucose enters the beta cell through GLUT transporters. Glucose metabolism 
results in an enhanced cytoplasmic ATP/ADP ratio which prompts closure of ATP-sensitive K+ (KATP) channels in 
the plasma membrane evoking membrane depolarization and subsequent opening of voltage-gated Ca2+ channels. 
This culminates in an increase in cellular Ca2+ influx- a primary driver of insulin exocytosis. Ca2+ and vesicle docking 
and fusion events can also be modulated by agents acting through the phospholipase C (PLC)/protein kinase C 
(PKC) or adenylate cyclase (AC)/protein kinase A (PKA) pathways, via neuro-hormonal and metabolic amplification 
(not illustrated). (Used with permission from (59)). 

Once the cell is depolarized, the L-type voltage-
gated calcium channels are triggered, increasing 
influx of calcium and resultant cellular calcium 
concentrations. Increased cytoplasmic calcium 
concentrations triggers release of insulin and C-
peptide from a pool of insulin-containing docked 
secretory vesicles and stimulates the migration of 
additional vesicles to the cell membrane (Figure 
3). Though simple glucose-stimulated insulin 
secretion (GSIS) as described above is considered 
the primary pathway for insulin secretion, the full 
picture is more nuanced. GSIS is augmented by 
amplifying pathways including: (1) metabolic 
amplification by amino acids, free fatty acids, and 
glucose itself; and (2) neurohormonal amplifiers 
such as GLP-1 and parasympathetic innervation 
(14, 34, 48, 76). More recent data from mice 
suggest a role for skeletal muscle in regulating β-
cell insulin secretion via production of an anorexic 
factor typically derived from the hypothalamus in 

the brain called BDNF (brain-derived neurotrophic 
factor) (26). This effect is mediated via the BDNF 
receptor (TrkB.T1) which is expressed on β-cells, 
and is thought to play a potential role in exercise-
induced glucose metabolism (26). These 
physiologic, and pharmacologic, triggers for insulin 
secretion are further described in the following 
sections. About half of insulin secretion occurs as 
basal insulin release, while the other half occurs as 
‘bolus’ insulin responses to a meal (62). This basal-
bolus dynamic of insulin secretion is important in 
considering clinical management of the patient with 
diabetes (Figure 4). In those with complete insulin 
deficiency—e.g. type 1 diabetes, late-stage type 2 
diabetes, or late-stage chronic pancreatitis 
diabetes—insulin analogs are administered by 
multiple daily injections or a continuous 
subcutaneous insulin infusion (insulin pump) to 
mimic this basal-bolus pattern of endogenous 
insulin secretion. 
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Figure 4. Diagrammatic illustration of insulin 
secretion. A low background secretion exists upon 
which is superimposed insulin secretory bursts 
stimulated by food intake. (Used with permission from 
Thompson, Christie, and Hindmarsh (97)). 

VI. Regulation of Insulin Release 

Insulin release from pancreatic β cells is tightly 
regulated, and allows the sensitive response of 
insulin levels to calorigenic nutrients in the body. 
Glucose, free fatty acids, and amino acids serve as 
fuel stimuli for insulin release, promoting insulin 
granule exocytosis. Additional hormonal factors 
influence the regulation pathway. Pharmacological 
agents can also be used to augment insulin 
release. 

A. Glucose-stimulated insulin secretion 

Glucose-stimulated β-cell insulin release is the 
primary mechanism of insulin regulation (Figure 3) 
(35, 88).In humans, this is illustrated by use of the 
hyperglycemic clamp technique (Figure 5), in 
which individuals are made rapidly hyperglycemic 
by injection of intravenous dextrose, and 
hyperglycemia is maintained by variable rate 
dextrose infusion at a predefined target glucose 
(20). Hyperglycemic clamp studies demonstrate a 
dose-response of insulin secretion in response to 
glucose concentration, with greater degrees of 
hyperglycemia eliciting a more robust insulin 
secretory response in the non-diabetic individual 
(70, 82). Using this research technique, two distinct 
phases of insulin secretion are observed.  During 
the first phase insulin response (otherwise referred 
to as the acute insulin response to glucose, 

AIRglu), there is an immediate and transient rise in 
insulin secretion, peaking by five minutes and 
lasting no more than ten minutes. This first phase 
of insulin secretion is hypothesized to largely result 
from the immediate release of insulin from insulin 
secretory vesicles that are already docked and 
primed at the β-cell membrane. This first phase 
response is lost under conditions of diabetes 
mellitus, when β-cell reserves are exhausted (104). 
The second sustained phase begins at this ten-
minute time-point and lasts as long as the glucose 
elevation is elevated. The second phase results 
from recruitment of insulin secretory vesicles to the 
β-cell membrane, and is also controlled by 
intracellular calcium levels (68). 

 

Figure 5.  Hyperglycemic clamp illustration. Example 
of hyperglycemic clamp testing in obese adolescents 
with normal glucose tolerance (NGT, solid line), 
impaired glucose tolerance (IGT, dashed line), and type 
2 dibetes (T2DM, dotted line). In the hyperglycemic 
clamp in healthy, non-diabetic individuals, glucose 
concentration is briskly elevated by administering a 
suitable intravenous glucose infusion at time 0.  This 
elicits a rapid and short-lived insulin secretion peak 
(first-phase secretion) due to release of preformed 
insulin vesicles, followed by a drop towards basal levels 
and then by a relatively rapid return to a sustained 
increase in insulin in the second half of the clamp 
(second-phase secretion) as dextrose infusion is 
continued. This example illustrates the loss, in first and 
second phase insulin secretion, as individual progress 
from normal to impaired glucose tolerance, to type 2 
diabetes. In the latter, the first phase insulin response is 
essentially lost and the second phase insulin response 
is reduced. (With permission from Wiess et al, (104)). 
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It is unclear how significant first and second-phase 
insulin responses are in the ‘real world’ setting. In 
contrast to this scenario of rapid infusion of 
intravenous glucose, ingestion of a physiologic 
meal results in a much more gradual rise of serum 
glucose (15). However, characterization of first 
phase insulin response is critically important in 
diabetes research. In progression to type 1 and 
type 2 diabetes mellitus, the earliest abnormality is 
a loss in the first phase insulin secretion (measured 
as the AIRglu). Although chronic pancreatitis 
diabetes is much less studied, this appears likely 
also to be the case in patients with chronic 
pancreatitis progressing to diabetes based on 
limited studies, and often in patients with chronic 
pancreatitis who have diabetes or pre-diabetes 
(18). The AIRglu can be elicited experimentally by 
administering a 0.3 g/kg dextrose bolus and 
sampling insulin levels at baseline and at +2, 3, 4, 
5, 7 and 10 min after the rapid IV administration of 
dextrose. The AIRglu can be calculated using 
various methods, including but not limited to the 
area under the curve minus baseline or mean of 
the 2-5 min values minus baseline. 

Interestingly, glucose also appears to be a 
‘metabolic amplifier’ for insulin secretion, in 
addition to the classic pathway of glucose-
stimulated insulin secretion. Glucose amplifies 
insulin secretion, a process called time dependent 
potentiation of insulin secretion—when β-cells are 
exposed to hyperglycemia this augments 
subsequent insulin secretory responses to glucose 
(112).     

B. Proteins and Amino Acids 

Pancreatic β cells adjust insulin secretion based on 
other nutrients including amino acids, fatty acids, 
and ketone bodies. Oral protein intake, and 
subsequent rise in serum amino acids, stimulate 
insulin release by direct β cell stimulation (11, 45, 
69). The insulinotropic effect varies among amino 
acids, and there appears to be a synergistic effect 
of mixed amino acids versus individual 
administration (24). 

Some amino acids stimulate insulin secretion by 

acting as substrates in the Krebs cycle, 
metabolizing glucose-6-phosphate to create ATP. 
Enzymes active in β cell mitochondrial amino acid 
metabolism have been implicated in 
hyperinsulinemic hypoglycemic syndromes 
associated with high-protein containing meals 
(Prentki, Matschinsky, and Madiraju 2013). The 
ATP binds to and closes the potassium channel, 
leading to cell depolarization and insulin secretion. 
There seems to be a direct effect of proteins and 
amino acids on β cell glucose sensitivity, because 
ingestion of amino acids with glucose results in the 
same plasma insulin concentrations as elicited by 
a lower level of glucose alone (27). 

C. Lipids and Free Fatty Acids 

It is generally accepted that lipids play a role in 
insulin secretion signaling, but the precise 
pathways and molecules involved in the process 
remain less well understood. Lipid breakdown and 
metabolism to signaling molecules has been linked 
to glucose metabolism through enhanced 
membrane phospholipid metabolism turnover and 
other pathways yet to be firmly established. It is 
thought that free fatty acids (FFA) modulate β-cell 
insulin secretion either directly via GPR40 (G-
protein coupled receptor on the β-cell) leading to 
insulin secretion, or indirectly via oxidation of FFA 
to acyl coA, which enters the Krebs cycle and 
generates ATP (43). 

Glucose and FFA metabolism have been shown to 
be tightly linked and likely includes malonyl-
CoA/carnitine palmitoyltransferase I/fatty acyl-CoA 
metabolic signaling network and the 
glycerolipid/free fatty acid (GL/FFA) cycle (13, 75). 
The GL/FFA cycle along with the Krebs cycle and 
pyruvate cycling are the three likely interlined 
metabolic cycles that play essential roles in insulin 
secretion promoted by glucose, FFA, and amino 
acids (76). In so doing, FFA work synergistically 
with glucose-stimulated insulin secretion to 
enhance insulin secretion in nutrient-abundant 
states. 

Chronic elevation of fatty acids may increase basal 
insulin secretion levels but inhibits glucose-
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stimulated insulin secretion. Chain length and 
degree of saturation affect the role free fatty acids 
play in regard to insulin plasma levels (95). 
Adipose tissue responds to insulin resistance with 
a persistently elevated rate of lipolysis, thus 
increasing the plasma free fatty acid levels. This is 
believed to be important in type 2 diabetes 
development (46). 

D. Incretin Hormones  

Though glucose concentrations can account for 
the majority of changes in insulin concentrations, 
complex studies evaluating in vivo insulin 
concentrations following meals have identified 
other factors (67). Indeed, insulin secretion 
following an oral glucose tolerance test is directly 
related to blood glucose levels, but is considerably 
higher than predicted following intravenous 
glucose infusion. These findings suggest a role for 
potentiating effects on insulin release by hormones 
that specifically respond to oral glucose, the 
“incretin effect”. This terminology is derived from 
intestinal hormones called incretins, which are 
credited with facilitating this response.  

The most active incretins are glucagon-like 
peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP) (38, 106), but 
gastrin, secretin, and cholecystokinin may also 
have minor roles. In response to glucose and other 
nutrients, intestinal L cells secrete GLP-1 and K 
cells secrete GIP. These hormones then bind their 
specific receptors on the pancreatic β-cell 
membrane. GLP-1 binds a G protein-coupled 
receptor. This results in direct activation of insulin 
gene’s cyclic-AMP (cAMP) response element 
(CRE) of the 5’-proximal control sequence (49, 93). 
It can also augment Pdx-1 binding in the setting of 
a glucose-stimulus, and stimulate transcription of 
the PDX-1 gene (39). Finally, it potentiates 
glucose-induced insulin gene transcription by 
activating NFAT (nuclear factor of activated T-cell) 
(57). The incretin effect is also mediated by 
glucose concentration, stimulating more insulin 
secretion in more extreme hyperglycemic states. 
GIP and GLP-1 receptors also exist on neuronal 

cells (e.g. nodose ganglion of the Vagus nerve), 
suggesting an additional indirect role in β-cell 
regulation (37). GLP-1 and GIP are cleared by 
dipeptidyl peptidase-4 (DPP-4) which is present on 
vascular endothelium. As a result, their half-life iin 
the circulation is 2-3 minutes and 4-5 minutes, 
respectively (63).  

VII. Insulin’s Counterregulatory 
Hormones 

The tight control of energy utilization and stores by 
insulin is balanced by the counterregulatory 
hormones glucagon, pancreatic polypeptide, 
somatostatin, cortisol, catecholamines, and growth 
hormone. There is asymmetry in the glucose 
regulation hormones, as insulin is the only 
hormone to prevent against hyperglycemia, while 
at least three other hormones (cortisol, glucagon, 
and adrenaline) prevent hypoglycemia.  
Collectively, these counter-regulatory hormones 
act to promote glucose release from the liver by 
glycogenolysis and gluconeogenesis, and inhibit 
glucose storage during times of starvation. 

Glucagon is formed within pancreatic α islet cells 
and has a hyperglycemic effect on the body (6). Its 
name is derived from glucose agonist (36). 
Glucagon carries out its effects via activating its G-
protein coupled receptor that is found in various 
organs/tissues such as the liver, adipose tissue, 
kidneys, gastrointestinal (GI) tract, brain, and islet 
α- and β-cells (105). It stimulates glucose 
production from amino acids and glycerol through 
gluconeogenesis and from the liver through 
glycogenolysis. Glucagon also acts at the 
adipocyte to upregulate hormone-sensitive lipase, 
thereby enhancing lipolysis and free fatty acid 
delivery to the liver (54). In the brain it increases 
satiety (9), and in the GI tract it reduces GI motility 
(47). Glucagon, via its autocrine role, stimulates 
further glucagon secretion through its effect on  α-
cells (55). Interestingly, glucagon stimulates insulin 
secretion via glucagon’s effect on β-cells. It is not 
clear if this effect is mediated mainly via glucagon’s 
effect on glucagon receptors or on GLP-1 
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receptors (105). This effect on insulin secretion 
occurs in the fed state (10). 

Mechanisms explaining glucagon secretion are not  
as well understood as those of insulin secretion, 
although the direct effect of reduced glucose on 
cAMP (111), and the sodium-glucose 
cotransporters (SGLT) are thought to play a role in 
α-cell glucose transport (3).  Mice and human data 
suggest that α-cell inhibition can occur, at least in 
part, due to the paracrine action of somatostatin 
from δ-cells as a result of gap junction-dependent 
activation by adjacent β-cells (7). 

Cortisol antagonizes insulin’s function by 
promoting protein catabolism to provide amino acid 
substrate for gluconeogenesis and also impairs 
peripheral insulin-mediated glucose uptake. 

Catecholamines directly affect β-cell secretion of 
insulin, as activation of α-2 inhibits insulin secretion 
and β stimulation increases it. Catecholamines 
promote adipocyte lipolysis, hepatic 
glycogenolysis and peripheral insulin resistance. 
Epinephrine inhibits insulin secretion through 
inhibiting the rate of insulin gene transcription 
(110). Somatostatin also destabilizes the 
preproinsulin mRNA, resulting in premature 
degradation (72). 

Somatostatin is released from pancreatic islet δ 
cells and exerts inhibitory effect on pancreatic β 
cells. Once bound to specific somatostatin 
receptors, β cell membrane repolarization is 
induced, resulting in reduction of calcium influx and 
thereby inhibiting insulin release (88, 110). 

Pancreatic polypeptide (PP) is secreted by PP, or 
F, cells in pancreatic islets (107). In addition to its 
effects reducing gastric acid secretion, decreasing 
gastric emptying and slowing upper intestinal 
motility, PP acts within the pancreas to self-
regulate pancreatic insulin secretion.  

VIII. Pharmacologic Modulators of 
Insulin Response 

 

There is a plethora of pharmacologic agents 
designed to target various aspects of glucose 
metabolism. In this chapter, we provide examples 
of pharmacologic agents that directly or indirectly 
modulate insulin response. 

A. Incretin mimetics 

Diabetes therapeutics have recently utilized the 
role of incretin hormones for pharmacologic 
benefit.  Due to the desirable effect of GLP-1 on 
hemoglobin A1c (HbA1c) reduction and weight 
loss (42), GLP-1 receptor agonists and inhibitors of 
its degradation via dipeptidyl peptidase-4 (DPP-4) 
inhibitors, have been used to treat type 2 diabetes 
since 2005. 

Short-acting GLP-1 receptor agonists (such as 
exenatide and Liraglutide), and long-acting GLP-1 
receptor agonists (such as weekly exenatide and 
Semaglutide) potentiate insulin secretion and 
reduce gastric motility (31). Given that GLP-1 
receptor agonists potentiate glucose-induced 
insulin gene transcription, they, alone, do not 
induce hypoglycemia when used as monotherapy 
(21,79). 

DPP-4 inhibitors (such as sitagliptin) can 
significantly increase the peak post-prandial 
concentration of GLP-1 (Herman et al. 2006). 
Additionally, sitagliptin has been found to 
potentiate GSIS independently of GLP-1 via islet 
peptide tyrosine tyrosine (PYY) (30). 

B. Sulfonylureas 

Through a direct action on pancreatic islet cells, 
sulfonylureas are pharmacological agents that 
stimulate insulin secretion, thereby lowering blood 
glucose levels. This class of medication was 
discovered by happenstance in 1942 when Marcel 
Janbon, a clinician at the Clinic of the Montpellier 
Medical School in France found his patients treated 
for typhoid fever with a new sulfonamide (2254 RP) 
developed hypoglycemia. Shortly after this, his 
colleague Professor August Loubatieres 
established the hypoglycemic property of 2254 RP 
and its analogues were by direct action on 
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pancreatic islets. This marked the birth of 
sulfonylureas for treatment of certain forms of 
diabetes (57). It was not until 50 years later that the 
mechanism of action was discovered. Sulfonylurea 
was found to bind to and block the potassium ATP 
channel on the β-cell surface, thus depolarizing the 
membrane and provoking calcium influx, raising 
intracellular calcium concentration, and triggering 
insulin secretion (86, 87). Sulfonylurea binding to 
the sulfonylurea receptor associated with the K-
ATP channel stimulates events similar to those in 
response to glucose stimulation. 

Sulfonylureas are also used in the chronic 
treatment of type 2 diabetes mellitus for both their 
effects on insulin release and blood glucose 
reduction. In contrast to acute use of sulfonylureas, 
chronic use results in improved blood glucose 
control, but with less rather than more insulin 
secretion (78). Assessments of its chronic effects 
are difficult to interpret, given that the magnitude of 
sulfonylurea stimulation of insulin secretion are 
multifactorial (53). 

C. Insulin Sensitizers  

Biguanides (such as metformin) and 
Thiazolidenediones (such as pioglitazone) improve 
Hepatic and peripheral (muscle and fat tissue) 
insulin sensitivity, respectively. Metformin is by far 
the most widely used pharmacologic agent as first 
line therapy in patients with type 2 diabetes 
mellitus. Similar to thiazolidenediones, metformin 
has an effect on improving peripheral insulin 
sensitivity in addition to reducing hepatic glucose 
output. Contrary to thiazolidenediones and 
sufonylureas, metformin does not cause weight 

gain, and in fact, it has a modest weight loss effect. 
When used as monotherapy, metformin does not 
induce hypoglycemia (85).  

D. Diazoxide 

Diazoxide is a sulfonamide pharmacological agent 
used in treatment of hyperinsulinism, insulinoma, 
and hypoglycemia due to overtreatment with 
sulfonylureas. It works by opening β cell membrane 
potassium ATP channels, hyperpolarizing the β 
cells, thus decreasing intracellular calcium 
concentration and inhibiting insulin secretion (27). 

IX. Conclusion 

In conclusion, although the pancreatic islets 
comprise only a small portion of the pancreas, 
pancreatic islets play a vital role in our well-being 
and survival through control of glucose 
homeostasis.  Most critically, loss of insulin 
production from the pancreatic β-cells, whether 
due to autoimmune destruction in type 1 diabetes 
mellitus, exhaustion and genetic predisposition to 
failure in type 2 diabetes mellitus, or bystander 
fibrotic destruction in pancreatic exocrine disease, 
results in diabetes.  Insulin secretion is tightly 
regulated in healthy non-diabetic individuals, with 
both insulin gene transcription and exocytosis from 
insulin-containing granules responsive to rises in 
ambient circulating blood glucose.  Other nutrients 
(protein and lipid) play a smaller role.  In contrast, 
the other pancreatic islet cells, particularly the 
glucagon-producing α cells, play a key role in 
glucose counter-regulation to avoid dangerous 
hypoglycemia. 
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