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Abstract 

The pancreatic acinar cell is one of the best- 

studied cell models of regulated secretion. On 

activation by neural or hormonal secretagogues, 

pancreatic acinar cells secrete a variety of 

inactive digestive enzyme precursors from 

zymogen granules (ZGs) undergoing exocytosis 

at the apical pole of this polarized cell. The acinar 

cell is also an excellent model to study pathologic 

membrane fusion events which underlie clinical 

pancreatitis. This includes apical exocytotic 

blockade along with ectopic fusion events 

including formation of large cytoplasmic vacuoles 

and redirected exocytosis to the basolateral 

plasma membrane; in these compartments 

zymogens become prematurely activated to 

initiate pancreatic tissue injury. Over the past two 

decades, my laboratory has been exploring the 

central role of SNARE [Soluble N- 

ethylmaleimide-sensitive factor (NSF) Attachment 

Protein (SNAP) Receptors] proteins in regulating 

physiologic and pathologic fusion events in the 

pancreatic acinar cell. SNARE proteins on 

cognate vesicles (v-SNARE) and target 

membrane (t-SNARE) mediate membrane fusion 

by their highly interactive coiled domains called 

SNARE motifs that form a trans-complex 

facilitated by Sec1/Munc18 (SM) and other 

accessory proteins. This forces the secretory 

granule (ZG) to come in proximity to the target 

membrane (plasma membrane) by the zippering 

action of the trans-SNARE complex that 

culminates in membrane fusion. This review 

provides an overview on how these proteins 

mediate normal regulated exocytosis in the 

pancreatic acinar cell and pathologic fusion 

events underlying pancreatitis. 

 

1. Regulated Secretion in 

Pancreatic Acinar Cells 

While all eukaryotic cells are capable of basal 

constitutive secretion, some specialized secretory 

cells like pancreatic acinar cells release their 

secretory products by agonist-evoked regulated 

exocytosis (35). The pancreatic acinar cell 

possesses one of the most robust protein 

synthetic machinery, synthesizing digestive 

proteases as inactive proenzymes that are sorted 

out from the trans-Golgi into condensing vacuoles 

(CVs), which then undergo additional maturation 

steps (3). These mature ZGs, which are     among 

accumulate at the apical pole of the acinar cell, 

occupying 10-30% of the total cell volume. These 
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ZGs are in an aggregate "ready-to-release" state 

waiting for fusogenic Ca2+ to induce their 

exocytosis with the apical plasma membrane and 

release of their cargo into the ductal lumen. 

Stimulation by secretagogues such as 

acetylcholine and cholecystokinin (CCK) activate 

respective G protein–coupled plasma membrane 

receptors to trigger a cascade of cellular events 

leading to the generation of intracellular 

messengers, primarily diacylglycerol (DAG) which 

activates protein kinase C (PKC), and inositol 

trisphosphate (IP3) which releases Ca2+ from 

IP3- sensitive  stores,  although  Ca2+   is  also 

released from other storage  compartments, 

including those sensitive to nicotinic acidic 

adenine dinucleotide (22, 51, 53). As well, there is 

generation of cyclic adenosine monophosphate 

(cAMP) which activates protein kinase A (PKA) 

and sequential activation of Rho and Rab family 

of small G proteins and other protein kinases (29, 

40, 52). The concerted actions of these signalling 

events on downstream substrate proteins, most 

importantly SNARE and associated proteins that 

constitute the exocytotic apparatus, culminating in 

exocytosis of ZGs. However, the apical plasma 

membrane constitutes less than 10% of the total 

cell surface area even under maximal physiologic 

stimulation, and thus primary exocytosis of ZGs 

with apical plasma membrane would not be 

sufficiently effective in exporting the very large 

amount of zymogens needed to be delivered into 

the duodenal lumen to efficiently digest the food 

continually being emptied from the stomach 

during a meal. Remarkably, pancreatic acinar 

cells are equipped to effect an orderly (within 10 

minute) fusion of majority (>30%) of the ZGs 

within the apical pole, termed sequential 

exocytosis (32). Sequential and compound 

exocytosis are not unique to acinar cells and are 

also observed to be even more efficient in other 

cell types such as eosinophils and mast cells, as 

such exocytotic efficiency are required  to effect 

the allergic response. However, it seems unique  

to the acinar cells that the fusion pores between 

this extensive network of homotypically-fused ZGs 

remain open for very long periods (> 10 min) (32, 

46), enabling a very efficient emptying  of 

zymogen cargo from the deepest lying ZGs in the 

apical pole. This provides an exquisitely regulated 

metered machinery that matches digestive 

enzyme output to the varying amounts of food 

being ingested. 

 

2. The SNARE Hypothesis for 

Membrane Fusion 

Exocytosis as we know today comes from the 

convergence of insights from primitive yeast 

constitutive secretion to the most highly regulated 

mammalian neurotransmitter release, where 

molecules mediating membrane fusion called 

soluble NSF (N-ethyl maleimide sensitive factor) 

attachment protein receptor (SNARE) proteins 

were shown to be remarkably and evolutionarily 

conserved (39). This SNARE Hypothesis has 

continued to evolve over the past two decades as 

new molecules have been discovered along with 

better methods for spatio-temporal resolution of 

exocytosis. Since SNARE motifs of different 

SNARE proteins are highly conserved and can in 

fact undergo promiscuous assembly in vitro, the 

fidelity of the numerous membrane fusion events 

that exist in vivo in a cell requires strict 

compartmentalized targeting of the different 

SNARE isoforms (39). Distinct spatial pairing and 

assembly of v-SNAREs (vesicle-associated 

membrane protein or VAMPs) and t-SNAREs 

(Syntaxins (Syn) and synaptosomal associated 

protein (SNAP) of 25 kDa or SNAP-25) into 

fusion-competent trans-SNARE complexes are 

selectively activated by a host of regulatory 

proteins including large families of Sec1/Munc18 

or SM proteins, calcium sensors and other 

proteins, many of which are coupled to second 

messengers such as Ca2+, cAMP and protein 

kinases (C and A) triggered by different   agonists 

(45). The pancreatic acinar cell has been an ideal 

model to examine these tenets of the SNARE 

Hypothesis.
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Figure 1. Distinct sets of cognate SM and SNARE proteins mediating apical and basolateral exocytoses, 
and ZG-ZG fusion. Respective SM proteins bind to syntaxins at the specific compartments at basal state (left). 
Upon stimulation (right), the SM proteins activate syntaxins into open conformation capable of binding the 
cognate VAMPs and SNAP-23 to form the distinct SNARE complexes that mediate the different exocytoses 

 

3. SNARE Protein Regulation of 

Physiologic Exocytosis in the 

Acinar cell 

We first mapped out the cellular locations of the 

v- SNARE (VAMPs) and t-SNAREs (syntaxins 

(Syn) and   SNAP-25)   in   the   pancreatic   

acinar   cell (Figure 1). We found three 

exocytotic syntaxin isoforms in different 

exocytotic compartments: syntaxin 2 (Syn-2) on 

the apical plasma membrane, syntaxin 3 (Syn-

3) on ZG membrane, and syntaxin 4 (Syn-4) on 

the basolateral membrane (14, 19). A smaller 

SNAP-25 isoform, SNAP-23, was the dominant 

SNAP-25 isoform present in ZGs and the entire 

acinar plasma membrane (16, 21). Although 

VAMP-2 and VAMP-3 were both present in 

acini, VAMP-2 was the dominant form for 

regulated exocytosis, while VAMP-3 may play a 

role in constitutive secretion (19). Different 

strategies were used to assess the exocytotic 

functions of these SNARE proteins. The first 

strategy was by employing botulinum   

 

neurotoxins or BoNTs, including tetanus 

neurotoxin or TeNT, which have been long 

known to block neurosecretion; and the 

discovery that exocytotic blockade was by 

proteolytic cleavage of SNARE proteins was 

instrumental in catapulting the field forward (18). 

However, unlike neurons, pancreatic acinar   

cells   do   not   have   plasma membrane 

receptors to internalize BoNTs. Thus, cell 

permealization strategies (ie. streptolysin O) 

were employed to internalized the BoNTs (18), 

which allowed us and others to show that TeNT 

and BoNT/C1 selectively cleaved pancreatic 

acinar VAMP-2 and syntaxins (Syn-2 and Syn-3 

only), respectively, blocking Ca2+-evoked 

enzyme release (18, 23). Of note, our initial 

observation in 1994 showed that in spite of the 

complete proteolysis of VAMP-2 by TeNT, there 

was only a 30% inhibition of enzyme secretion 

(18). It was 15 years later when we discovered 

that another VAMP, VAMP-8, when genetically-

deleted, abrogated the majority of regulated 

apical exocytosis (7). This was primarily by 

VAMP-8’s role in mediating ZG-ZG fusion, 
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shown by epifluorescence and confocal imaging 

of the fluorescent dye FM1-43, and with higher 

spatial resolution employing multi-photon 

microscopy (4, 7). Thus, primary exocytosis of 

ZGs with apical plasma membrane is mediated 

by VAMP-2 per se (4, 7). Interestingly, the 

VAMP-8-deleted mice showed no symptoms of 

malabsorption suggesting that the remaining 

zymogens secreted by the restricted primary 

exocytosis into the gut were sufficient for 

digestion. The exocytosis role of SNAP-23, 

which was resistant to BoNTs, was shown by 

adenovirus expression of dominant- negative 

carboxyl-terminal deleted SNAP-23 (27). The 

current thinking of the SNARE Hypothesis 

indicates a critical role for SM proteins (6) to 

bind and activate syntaxins to bind cognate 

SNAREs proteins to form fusion-competent 

SM/trans- SNARE complexes (45). SM 

(nSec1/Munc18) proteins are a group of 

hydrophilic 60–70-kDa polypeptides, first 

identified as UNC-18 in C. elegans (5) and Sec1 

in yeast (34). The mammalian homologue 

neuronal Munc18-1 (also known as Munc18a, 

nSec1 or RbSec1) was first identified and found 

to bind syntaxin-1A (26), then later shown to 

activate syntaxin-1A to bind cognate SNAREs 

proteins to form fusion- competent SM/trans-

SNARE complexes (45). Neuronal Munc18a is 

not present in acinar    cells, whereas Munc18b 

and Munc18c are (7,16). Using 

immunoprecipitation assays on physiologic 

CCK- and carbachol-stimulated pancreatic 

acini, distinct quaternary SM/SNARE complexes 

were captured (4, 7), including Munc18b 

binding to the trans- SNARE complex – Syn-

2/VAMP-2/SNAP-23 we postulate to mediate 

primary exocytosis of ZGs with apical plasma 

membrane, and Munc18b binding to the trans-

SNARE complex – Syn- 3/VAMP-8/SNAP-23 

we postulate to mediate sequential ZG-ZG 

fusion (4, 7). While the basic tenets of the 

different above- mentioned exocytotic 

processes mediated by distinct SM/SNARE 

complexes in the pancreatic acinar cell seem to 

mimic the well-studied synaptic vesicle 

exocytosis in the neuron (39, 45), the 

pancreatic acinar cell does exhibit some distinct 

features. Unlike neurons and other secretory 

cells, it seems that most of the acinar ZGs do 

not completely collapse into the plasma 

membrane during exocytosis; thus the complete 

disassembly and recycling of SNARE 

complexes postulated to occur in neuro-

exocytosis (39, 45) may not be completely 

mimicked in the acinar cell. Future work will also 

be needed to elucidate how this architecture of 

intact ZGs is maintained during exocytosis. 

Furthermore, in the acinar cell, the fusion pores 

between the sequentially-fused ZGs remain 

open for great lengths of time and then close 

after partial emptying of the zymogen cargo (32, 

46). The partially emptied ZGs then reload with 

zymogens to get ready for the next round of 

exocytosis. Much work will also be needed to 

elucidate the molecular machinery that 

maintains the fusion pores to remain open for 

such extended periods. 

 

4. Other Proteins in Regulated 

Apical Exocytosis 

Complexins (complexins 1 and 2), 

Synaptotagmins (Syts) and cysteine string protein 

(CSP)-α have been recently described to be 

accessory SNARE-interacting effectors of neural 

exocytosis (38, 45). Complexins preferentially 

bind to assembled SNARE complexes and act 

both as clamp and an activator of SNAREs by 

pulling the complex closer to the membrane, 

leading to a “super-primed” state ready for 

immediate fusion (31). It is believed that the Ca2+ 

sensing Syts finally triggers fusion (38,45). Ca2+ 

binding to Syts promote their oligomerization and 

binding to the SNARE complex, allowing the 

formation of a quaternary SNARE-synaptotagmin-

Ca2+-phospholipid complex and thus promote 

membrane fusion (38). CSPα is a synaptic vesicle 

protein which forms a complex with heat shock 

protein cognate 70 (Hsc70) and complexin in 

neurons (44). These proteins are all present in the 
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pancreatic acinar cell (10). In pancreatic acinar 

cells, complexin 2 is in the apical pole (10) and 

CSP-α is on the ZG, the latter further shown to 

interacted with VAMP-8 and Hsc70 (50). 

Recently, several isoforms of Syt (Syt 1, 3, 6 and 

7) were also found in pancreatic acini (11), with 

Syt 1 found in the ZGs and apical membrane, and 

Syt 3 found in both acinar membrane and 

microsomes (11). It is possible that some of these 

proteins, particularly Syts and complexins,  may 

act as either fusion clamps and/or calcium 

sensors capable of responding to the different 

Ca2+ release events, including apical oscillatory 

Ca2+ spikes versus global Ca2+ rise (36),  

mediating physiologic (above) and pathologic 

(below) exocytoses, respectively. 

 

5. SNARE Proteins Mediate 

Pathologic Basolateral Exocytosis 

Underlying Pancreatitis 

The basolateral plasma membrane accounts for 

90% of the acinar cell surface area where little or 

no exocytosis occurs normally. However, the 

basolateral plasma membrane of the pancreatic 

acinar cell contains a complete set of t-SNARE 

proteins (Syn-4, SNAP-23) and cognate SM 

protein Munc18c indicating that this plasma 

membrane domain has the membrane fusion 

machinery for exocytosis to potentially occur (17). 

An    early    morphological    study    showed that 

supraphysiological CCK or cholinergic stimulation 

caused apical exocytotic blockade and induced 

ectopic exocytosis at the lateral plasma  

membrane (42), releasing enzymes into the 

interstitial space, which when activated led to 

cellular destruction ie. interstitial pancreatitis (24). 

This report (42) was largely ignored until more 

recently when we elucidated the exocytotic 

machinery mediating this pathologic fusion event 

(15), thus re-establishing the thinking that this is a 

major event contributing to pancreatitis (15). 

Employing FM1-43 fluorescence imaging, 

basolateral exocytosis was observed in dispersed 

rat pancreatic acini after supramaximal CCK or 

carbachol stimulation; and more remarkably, also 

after treatment with clinically-relevant 

concentrations of alcohol and putative alcohol 

metabolites followed by physiologic CCK or 

carbachol stimulation (8, 9, 28), thus simulating 

alcoholic pancreatitis. We recently reported an 

improved exocytosis imaging technique (Figure 

2) whereby adenoviral expressed pH-sensitive 

fluorophore, syncollin-pHlourin, targeted to ZGs, 

fluoresced upon exocytosis observed by spinning 

disc microscopy, enabling high spatial resolution 

and real time visualization of both apical and 

basolateral exocytoses (9, 12). In these reports, 

electron microscopic analysis of pancreatic 

tissues of rodents subjected to similar 

supramaximal stimulation showed aberrant 

exocytosis occurring at the lateral plasma 

membrane and consequential interstitial 

pancreatitis. We found SM protein Munc18c  on 

the basolateral plasma membrane, which on 

supramaximal stimulation resulted in specific 

PKC-α phosphorylation of Munc18c, inducing its 

assembly and activation of trans-SNARE complex 

Syn-4/VAMP-8/SNAP-23 (8, 28), which we 

postulated to be the putative SM/SNARE complex 

mediating pathologic basolateral exocytosis (7). 

PKC phosphorylation of Munc18c activates Syn-4 

into open conformation conducive to forming 

SNARE complexes with SNAP-23 and VAMP8, 

thus rendering the basolateral plasma 

membrane receptive to exocytosis with 

approaching VAMP8 containing ZGs. Activation of 

Munc18c reduces its affinity to open conformation 

Syn-4. Interestingly, in a human case of quiescent 

chronic alcoholic pancreatitis, this resulted in 

Munc18c becoming displaced into the cytosol of 

residual intact acinar cells, suggesting that this 

might be a possible contributing mechanism 

predisposing to recurrent pancreatitis often 

observed in these patients (20). Whereas ZGs are 

sparse in the vicinity of the basolateral surface, 

we found that upon supramaximal carbachol or 

alcohol (or alcohol metabolite) plus submaximal 

agonist stimulation of pancreatic acini, VAMP-8-

labeled ZGs were redirected to approach the 

basolateral membrane (7, 9). 
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Figure 2. Imaging of apical and basolateral exocytosis by recording syncollin-pHlourin fluorescence 
hotspots using spinning disk confocal microscopy. Shown are DIC images with superimposed syncollin- 
pHluorin gre  of rat pancreatic acini. Two concentric circles are drawn. Inner 
dashed circle encompasses the ZG poles surrounding the apical lumen; exocytosis in this region we consider 
as apical exocytosis. Outer solid circle encompasses from the acinar basal plasma membrane up to the borders 
of the ZG poles; exocytosis in this region we consider as basal exocytosis. Note in A, in a rat pancreatic acinius 
stimulated with 200 pM CCK-8, syncollin-pHluorin green fluorescent hotspots were confined to the apical region 
(inner dashed circle) with arrowhead indicating the apical lumen. The fluorescent hotspots in the deeper regions 
of the apical pole (arrows) indicate sequential exocytosis with these deep-lying ZGs. In B, an acinus pretreated 
with 3 mM acetaldehyde (an alcohol metabolite) then stimulated with 200 pM CCK-8, caused a redirection of 
much of the apical exocytosis (arrowhead pointing to apical lumen) to the basolateral region. The arrow 
indicates a green hotspot at the junction of basal and lateral plasma membrane region. Many of the hotspots 
are outside the inner dashed circle and distant from the apical lumen and apical poles. These data are similar to 
those recently reported by us in ref. 9. 

 

Furthermore, employing VAMP-8 null mouse 

dispersed pancreatic acini, basolateral exocytosis 

was indeed completely prevented (7). 

Remarkably, induction of acute pancreatitis by in 

vivo supramaximal carbachol or alcohol plus 

submaximal carbachol stimulation did not result in 

pancreatitis in VAMP-8 null mice (7). To translate 

these findings to clinical pancreatitis, we fed mice 

with an  alcohol  diet  and  then  stimulated    with 

postprandial carbachol stimulation, which caused 

pancreatitis in wild type mice, but not in the 

VAMP-8 null mice (7). Likewise, the alcohol diet 

redirected CCK-mediated exocytosis to the 

basolateral membrane causing alcoholic 

pancreatitis (7). 

 

 

 

 

6. Formation of large cytoplasmic 

vacuoles 

The current dogma over the past two decades 

postulated that the dominant key early cellular 

event leading to pancreatitis is the formation of 

large cytoplasmic vacuoles where hydrolytic 

lysosomal enzymes and zymogens become co- 

localized to cause premature activation of 

zymogens (33, 41, 49) causing intracellular 

digestion leading to cell injury. The molecular and 

cellular mechanisms underlying the formation of 

these large vacuoles are only now becoming 

clearer. Studies on in vitro model of acute 

pancreatitis in dispersed acini (43) or in vivo 

studies on cerulein/L-arginine model of acute 

pancreatitis (30) reveal perturbation  in 

endocytosis (43) and autophagy (30) underlying 

the process of vacuole formation and intracellular 

trypsinogen activation.  
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Table 1 

SNARE, SM and accessory proteins in pancreatic acinar cells 
 

SNARE protein Localization Binding partners  Function References 

v-SNAREs 
VAM-2 

VAM-8 

t-SNARE 
Syn-2 

Syn-3 

Syn-4 

SNAP2

3 

 

SNARE 

Regulators 

SM Proteins 
Munc 18b 

 

Munc 18c 

Complexins 

Complexin 2 

 

 

ZG 

ZG 

 
Apical membrane 

ZG 

Basolateral membrane 

 

Basolateral and ZG 

membrane 
 

 

 
 

 

 

 

Apical membrane & 

ZG 

 

Basolateral membrane 
 

 
Apical membrane 

 

 

Syn-2, SNAP-23 Apical exocytosis 18, 19, 23 

 
Syn-4, SNAP-23 Basolateral exocytosis 4, 7 

Syn-3, SNAP-23 ZG-ZG f u s i o n  4, 7 

 

SNAP-23, Munc 18b, VAMP-2 Apical exocytosis 4, 7, 9, 14, 23 

 

SNAP-23, Munc 18b, VAMP-8 ZG-ZG fus ion  4, 7, 9, 14, 23 

 

SNAP-23, Munc 18c, VAMP-8 Basolateral exocytosis   7-9, 14, 17, 

28 Syn,, Syn-3, Syn-4, VAMP2, VAMP-8    All three exocytoses 7, 17, 21 

 

 

 

 

 

Syn-2, S y n -3  Promotes ZG-apical PM   7, 9, 

16 and ZG-ZG SNARE complex 

 

Syn-4 Promotes basolateral 7-9, 17, 

28 SNARE complex 

VAMP-2, Syn-3, Syn-4 Regulates apical 10 

secretin 

complex 
 

ND, Not determined: PM, plasma m e mb r a n e  

 

The ability of cathepsin B inhibitor to inhibit 

trypsinogen activity in the endocytic vacuole (43), 

taken along with the evidence that 

autophagosomes/autolysosomes accumulate in 

acute pancreatitis (25, 30) suggest that vacuolar 

trypsinogen could be delivered to hydrolase-

containing vesicles or lysosomes by endocytosis 

or autophagy. Of note, almost nothing is known 

about the precise molecules mediating these 

pathologic vesicular transport and fusion 

processes. Studies from different groups 

investigati

ng other 

cell types 

have 

proposed 

the  

 

 

 

 

involvement of SNARE proteins in the fusion of 

endocytic and autophagy c vacuoles with 

lysosomes (13, 37). Syntaxin 7 is thought to be 

the SNARE protein required for both homotypic 

late endosome fusion and heterotypic fusion with 

lysosomes (2). The other SNARE proteins in this 

process were identified using antibody inhibition 

of cell-free assays, which are Vti1b, syntaxin 8, 

VAMP-7 and VAMP-8 (1, 47, 48). These reports 

taken together lead us to postulate that these 

pathologic processes underlying pancreatitis may 

involve these candidate membrane fusion 

Synaptotagmins 

Synaptotagmin 1 

 
Apical ZG 

 
VAMP-2 

 
Regulate Ca2+ induced 

 
11 

   secretion  
Synaptotagmin 3 Acinar membrane ND   

Synaptotagmin 6 ND ND ND 11 

Synaptotagmin 7 ND ND ND 11 

Cysteine string 

protein α 

ZG VAMP-8, complexin Augments exocytosis 

by stabilizing exocytotic 

50 
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molecules rather than those we have described 

above for apical and basolateral exocytoses.    

Much    further    work    from our laboratory and 

others will be required to pursue these 

possibilities. 

 

7. Future Directions 

From this brief review, much is known about the 

different fusion molecules mediating physiologic 

and pathologic exocytosis in the pancreatic acinar 

cell, which we summarized in Table 1. Many of 

these exocytotic processes have been found to 

mimic neuronal exocytotic machinery. However, 

the pancreatic acinar cell exhibits a number of 

distinct features in physiologic exocytosis such as 

long fusion pore openings, and in pathologic 

exocytosis such as the formation of large 

cytoplasmic vacuoles, whose molecular bases are 

unknown. From the future work directed at 

defining the molecular mechanisms underlying 

these unique features in exocytosis, one may be 

able to identify strategies to increase the  

efficiency of secretion of residual  pancreatic 

acinar cells to treat diseases of exocrine 

insufficiency, or block the pathologic exocytosis 

that could prevent progression to severe 

pancreatitis. 
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