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1. Introduction 

The exocrine pancreas secretes digestive 
enzymes, fluid, and bicarbonate in response to 
food ingestion. This is a critical digestive process 
that is regulated by neural reflexes, 
gastrointestinal hormones, and absorbed 
nutrients. Secretion is highly regulated by both 
stimulatory and inhibitory influences that 
coordinate the delivery of digestive enzymes with 
food emptying into the intestine to assure 
adequate digestion of a meal. In the absence of 
proper pancreatic secretion, maldigestion and 
malabsorption of nutrients may cause malnutrition 
and associated complications. This review 
describes the physiological processes that 
regulate pancreatic exocrine secretion. 

 
2. Phases of Meal Response 

Pancreatic secretion in response to a meal occurs 
in four distinct but overlapping phases which are 
named based on the location of ingested food. 
The four phases of pancreatic secretion are 
cephalic, gastric, intestinal, and absorbed nutrient. 
Considerable crosstalk and inter-regulation is 
associated within the phases, thereby ensuring 
adequate, but not excessive, enzyme and 
bicarbonate secretion. Each phase is regulated by 
a complex network of neural, humoral, and 
paracrine feedback mechanisms which help to 
maintain an optimal environment for food 
digestion and absorption. 

 

Cephalic Phase  
Sensory inputs such as sight, smell, taste, and 
mastication (prior to swallowing) lead to the 
anticipation of food. These sensations initiate the 
first phase of pancreatic secretion known as the 
cephalic phase. In addition to sensory input, 
interaction of certain food molecules such as long 
chain fatty acids (but not triglycerides or medium 
chain fatty acids) with receptors in the oral cavity 
also induce the cephalic phase (119). 
Furthermore, studies in animals have implicated a 
gustatory vago-pancreatic reflex in mediating the 
cephalic phase of pancreatic secretion (247, 271). 
 
Approximately 20-25% of the total pancreatic 
exocrine secretion occurs during the cephalic 
phase (8, 54, 163). This estimate is based on data 
obtained by sham feeding, a process by which 
food is anticipated by sight, smell, and taste, but 
not ingested. Sham feeding in animals such as 
dogs, has been evaluated by inserting a surgically 
prepared gastric fistula that diverts food from the 
esophagus, allowing swallowing but not entry of 
food into the stomach. In humans sham feeding 
involves chewing but not swallowing. The 
pancreatic response to sham feeding in humans 
lasts approximately 60 minutes while in dogs it 
can last for more than 4 hours (288, 302). Sham 
feeding stimulates pancreatic secretion which is 
low in bicarbonate but rich in enzymes, 
suggesting that pancreatic acinar, rather than 
ductal cells are stimulated in this phase (8).  
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The cephalic phase of exocrine secretion is under 
the control of the vagus nerve. Sensory inputs 
arising from anticipation of food are integrated in 
the dorsal vagal complex (located in the 
brainstem) and transmitted to the exocrine 
pancreas via the vagus nerve (83, 256). 
Cholinergic agonists produce secretory responses 
similar to cephalic stimulation while vagotomy 
blocks the cephalic responses, suggesting that 
acetylcholine released by vagal efferents is the 
primary mechanism by which sensory inputs lead 
to exocrine secretion (18, 125). Secretion of the 
islet hormone, pancreatic polypeptide (PP), 
increases with sham feeding and serves as an 
indicator of vagal innervation of the pancreas, as 
its secretion is inhibited by cholinergic blockers 
(149, 293). When sham feeding is accompanied 
by swallowing, the pancreatic secretory and PP 
responses are much greater implying that 
chewing and swallowing stimulate PP secretion 
by cholinergic mechanisms (294). 
 
The exocrine pancreas contains peptidergic nerve 
terminals and there is some evidence to suggest 
that neuropeptides such as vasoactive intestinal 
peptide (VIP) and gastrin-releasing peptide (GRP) 
may influence the cephalic phase. In addition, 
thyrotropin-releasing hormone stimulates 
pancreatic exocrine secretion of protein and 
bicarbonate through vagal efferents and this 
process involves both muscarinic and VIP 
receptors (8, 121, 160). In contrast, the effects of 
inhibitory cerebral calcitonin gene-related peptide 
(CGRP) are mediated by sympathetic 
noradrenergic efferents acting upon α-adrenergic 
receptors (160, 211). Sham feeding and electrical 
vagus nerve stimulation in dogs triggers the 
release of cholecystokinin (CCK) although this 
response may be absent in humans (8, 155, 291). 
Endogenous CCK was shown to enhance PP 
release in humans during sham feeding (149). 
Therefore, although peptidergic neurotransmitters 
are released during vagal stimulation, 
acetylcholine is believed to be the main 
neurotransmitter which regulates the cephalic 
phase.  
 

 A number of G protein-coupled receptors 
(GPCRs) located on acinar cells also mediate the 
cephalic phase of enzyme secretion. Interaction of 
CCK with CCK-1 receptors has been shown to 
induce protein secretion in new born calves (352). 
This response is possibly dependent upon neural 
CCK release as cephalic stimulation does not 
increase blood levels of CCK. Thus, both neural 
and hormonal mechanisms play an important role 
in regulating the cephalic phase of pancreatic 
secretion.  
 
Gastric Phase  
Entry of food into the stomach initiates the gastric 
phase of pancreatic secretion. This phase has 
been difficult to study in unanesthetized animals 
because presence of food in the stomach initiates 
neural reflexes and release of hormones. 
Therefore, physiological data regarding this phase 
has been collected by gastric distention induced 
either by balloon dilation or instillation of inert 
substances in the antrum. 
 
Experiments in which gastric contents were 
prevented from emptying into the duodenum 
demonstrated that the gastric phase accounted 
for approximately 10% of pancreatic secretion. 
Secretions induced during this phase consist 
mainly of enzymes with minimal release of 
bicarbonate suggesting that acinar cells are 
primarily involved in the induction of this phase (8, 
37, 331, 338).  
 
The role of gastrin in this phase of pancreatic 
secretion remains unclear. It was demonstrated 
that step-wise alkaline distension of the antrum 
induced graded release of gastrin and pancreatic 
enzymes (53). However, when exogenous gastrin 
was administered to dogs the amount required to 
stimulate exocrine secretion was much greater 
than normal postprandial gastrin levels, 
suggesting that gastrin did not have a 
physiological role (160). These findings are 
supported by other studies demonstrating that 
gastrin release is not required for pancreatic 
enzyme secretion during this phase.  
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The vagus nerve plays an important role in the 
gastric phase of pancreatic secretion. Early 
experiments in anesthetized cats demonstrated 
that stimulation of the antrum resulted in vagal 
stimulation of pancreatic amylase release (25). 
Antral distension in dogs also increased 
pancreatic secretion by long route vagal pathways 
(53). An antropancreatic short reflex pathway 
which is blocked by hexamethonium and atropine 
also mediates this phase (82). In addition, 
atropine and vagotomy block the gastric phase 
providing further evidence that gastric 
contributions to pancreatic secretion are mediated 
by vagovagal cholinergic reflexes that originate in 
the stomach and terminate in the pancreas (173, 
338, 339). CCK release plays an important role in 
antral motility and gastrin release in humans as 
suggested by sham feeding experiments (149).  
 
In the stomach, pepsin and gastric lipases 
catabolize proteins and fats into peptides and 
triglycerides plus fatty acids, respectively, while 
salivary amylase contributes to the continued 
digestion of carbohydrates. Peptic digests of 
proteins are effective in stimulating the intestinal 
phase (100). Thus when gastric chyme enters the 
duodenum, it stimulates the intestinal phase of 
pancreatic secretion. In a clinical setting, surgical 
procedures that slow the rate of gastric emptying 
reduce pancreatic secretion (200, 207). 
Therefore, the rate of gastric emptying regulates 
the discharge of nutrients into the intestine and 
consequently the activation of the intestinal phase 
through neural and hormonal pathways.s 
 
Intestinal Phase  
As mentioned above, digestion of food in the 
stomach is followed by release of acidic chyme 
into the duodenum which initiates the intestinal 
phase of pancreatic secretion. By this phase, the 
pancreas has already been primed by cephalic 
and gastric influences, which enhance blood flow 
and initiate exocrine secretion. A majority of the 
pancreatic secretory response (50 - 80%) occurs 
during the intestinal phase and is regulated by 
hormonal and neural mechanisms. 
 

The intestinal phase is more easily studied than 
the gastric phase as food can be instilled directly 
into the intestinal lumen without concern for 
gastric emptying. Stimulation of both acinar and 
ductal cells results in the production of enzyme 
and bicarbonate secretion. Pancreatic amylase 
secretion is stimulated by food molecules such as 
sodium oleate, monoglycerides, peptides, and 
amino acids (particularly tryptophan and 
phenylalanine) (50, 88, 188, 215-217). In the 
duodenum the high volume of bicarbonate 
released neutralizes the acidity of gastric chyme, 
while pancreatic enzymes catabolize partially 
digested food into molecules that are easily 
absorbed by intestinal enterocytes.  
 
In the intestinal phase, pancreatic response is 
regulated primarily by the hormones secretin and 
CCK, and by neural influences including the 
enteropancreatic reflex which is mediated by the 
enteric nervous system and amplifies the 
pancreatic secretory response. Entry of low pH 
gastric chyme into the intestine stimulates release 
of secretin from S cells into the blood (164). The 
main action of secretin is to stimulate bicarbonate 
release from pancreatic duct cells, but it also has 
a direct effect on acinar cells and potentiates 
enzyme secretion. The role of secretin in 
pancreatic secretion is addressed later in this 
review. CCK is released by proteins and fats and 
their partial digestion products: peptides and fatty 
acids. Experiments in dogs with chronic 
pancreatic fistulae have shown that CCK 
antagonism diminishes pancreatic protein 
response to a meal and duodenal perfusion 
suggesting that CCK plays an important role in 
this phase (169). Similar results were also 
obtained in humans, where CCK receptor 
antagonism reduced pancreatic enzyme secretion 
during the intestinal phase (85, 116).  
Cholinergic regulation plays a critical role during 
this phase of pancreatic secretion. In the absence 
of secretin, atropine partially inhibits pancreatic 
bicarbonate secretion stimulated by low pH due to 
acidic chyme in the duodenum (306, 349). In 
addition, the amount of bicarbonate produced by 
infusion of secretin is lower than that released by 
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entry of food into the duodenum suggesting that 
other factors contribute to meal-stimulated 
pancreatic bicarbonate secretion (30). Atropine 
inhibited pancreatic enzyme secretion from 30 -
120 minutes following meal ingestion, implicating 
cholinergic mechanisms (30). Vagovagal 
enteropancreatic reflexes mediated by M1 and M3 
muscarinic receptors and CCK receptors play an 
important role in the intestinal phase of secretion 
(302, 304). These vagovagal enteropancreatic 
reflexes are modulated by input from the dorsal 
motor nucleus of the vagus projecting into the 
pancreas. Thus, vagal stimulation activates 
pancreatic bicarbonate secretion through both 
cholinergic muscarinic and noncholinergic 
transmission. 
 
Role of Gastric Acid 
The physiological effects of acid on pancreatic 
secretion have been evaluated by various 
methods such as diversion of gastric and 
pancreatic contents with fistulae, and instillation of 
acidic solutions into the duodenum. Both gastric 
acid and exogenous HCl are powerful regulators 
of postprandial pancreatic bicarbonate secretion 
and their effects are potentiated by intrapancreatic 
and vagovagal neural pathways as well as by 
hormones such as secretin and CCK (303) 
indicating that the physiological effects of gastric 
acid are due to its pH.  
 
Intraduodenal infusion of hydrochloric acid elicited 
a concentration-dependent increase in both the 
amount of bicarbonate and volume of pancreatic 
secretion. Secretion was similar to that attained 
with intravenous infusion of exogenous secretin 
suggesting that pH changes resulting from entry 
of acidic contents into the duodenum are 
important in inducing pancreatic secretion. 
Administration of a peptone meal of varying pH 
(pH 1 to 5) produced a maximal secretory 
response at pH 3.0, which was comparable in 
magnitude to that obtained with exogenous 
secretin (58). Acid infusion in both the duodenum 
and upper jejunum elicited pancreatic secretion 
suggesting that the proximal small intestine 
responds to this stimulus (164).  

Entry of gastric contents into the duodenum 
creates an acidic environment with a pH of 2.0 - 
3.0 in the initial segment of the duodenum, while 
the pH of the distal segment remains alkaline (32, 
279). This difference in pH is due to pancreatic 
bicarbonate release, which is augmented in large 
part by gastric acid-induced secretin release from 
the intestinal mucosa. In conscious rats with 
gastric and pancreatic fistulae, diversion through 
a gastric fistula produced a small increase in 
pancreatic secretion. However, instilling 
hydrochloric acid into the duodenum with an open 
gastric fistula augmented pancreatic secretion 
(22, 94). In addition, pancreatic bicarbonate 
secretion was much greater when pancreatic juice 
was diverted from the intestine signifying a 
correlation between intestinal pH and quantity of 
pancreatic bicarbonate release (48, 113). 
 
The pancreatic bicarbonate response is 
dependent on the concentration of free unbuffered 
hydrogen ions and not on the total load of 
buffered acid entering the duodenum. Inhibition of 
gastric acid production by cimetidine (an 
histamine H2 receptor blocker) or omeprazole (an 
H+/K+ ATPase inhibitor) substantially reduced the 
pancreatic bicarbonate response to a meal (22, 
232). The pH of a liquid gastric meal also plays a 
significant role in pancreatic bicarbonate 
secretion; in cats and dogs, pH > 4.5 resulted in 
little pancreatic bicarbonate secretion, while at pH 
<4.0 secretion increased substantially suggesting 
that a pH threshold of < 4.5 is critical for 
stimulation of pancreatic secretion (58, 219). 
 
This evidence implies that gastric acid is an 
important regulator of pancreatic bicarbonate 
secretion which neutralizes the acid to create an 
alkaline environment optimal for the action of 
pancreatic enzymes and continued digestion of 
food.  
 
Role of Dietary Fat in Pancreatic Secretion 
Dietary fats stimulate pancreatic enzyme and 
bicarbonate secretion. Perfusion of monoolein 
stimulated pancreatic enzyme secretion in 
humans and this effect was similar in potency to 
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that observed with intravenous CCK injection 
(202). In contrast, triglycerides administered 
directly into the duodenum (in the absence of 
endogenous lipase) were unable to induce 
pancreatic secretion. However, following lipase 
digestion of fatty acids, monoglycerides 
stimulated pancreatic secretion but glycerol was 
ineffective indicating that fatty acids are the major 
component of ingested fats that stimulate 
pancreatic secretion (202, 214). 
 
There is some evidence to suggest that both free 
and saponified fatty acids induce pancreatic 
secretion, while other experiments suggest 
effectiveness only in a micellar form. Secretion 
has been shown to be dependent on fatty acid 
chain length, with C4 being least effective and 
C18 being most effective (59). Although the 
reason for this difference in potency is not entirely 
clear, it is not believed to be related to the 
efficiency of absorption (201). Other studies have 
demonstrated that intraduodenal administration of 
propionate (C3) was more effective than oleate 
(C18) in stimulating acinar cell secretion (241). 
The reason for the differences between the two 
studies is not entirely clear but could be species 
related as these experiments have been 
performed in humans, rats, and rabbits. Both 
oleate and neutral fats stimulate bicarbonate and 
fluid secretion, whereas only neutral fats stimulate 
pancreatic enzyme secretion. In dogs, oleic acid 
was shown to potentiate acidified protein-
meditated pancreatic enzyme and bicarbonate 
secretion (75). Fat emulsions given to conscious 
rats produced a 3-fold increase in pancreatic 
protein secretion. The route of fat administration 
also has an impact on pancreatic secretion. 
Intravenous administration of fat did not produce 
pancreatic secretion, whereas intraduodenal 
administration led to elevated protein, 
bicarbonate, and fluid secretion (246, 315).  
 
Administration of fat emulsions increases plasma 
CCK and secretin levels. Fat-mediated pancreatic 
secretion was blocked by proglumide, a CCK 
receptor antagonist, implicating the importance of 
CCK in stimulating pancreatic secretion (97). Both 

C12 and C18 fatty acids augment the effects of 
secretin-induced bicarbonate secretion (74). In 
humans, introduction of different concentrations of 
oleic acid into the duodenum induce pancreatic 
secretion, although the threshold for CCK 
stimulation is much lower than for secretin (252). 
Secretin release is physiologically important since 
injection of anti-secretin antibodies in conscious 
rats greatly reduce fat-mediated protein and 
bicarbonate secretion (101).  
 
A critical fatty acid chain length of C12 was 
required for CCK release from STC-1 cells, a 
neuroendocrine tumor cell line. Fatty acids with 
less than ten carbon atoms did not augment 
secretion. This dependence on fatty acid chain 
length is similar to that observed previously for in 
vivo CCK release in humans. In addition to the 
fatty acid carbon chain length, a free carboxyl 
terminus is also important as esterification of the 
carboxylic terminus abolished CCK secretion, 
while modification of the methyl terminus had no 
effect (208-210). Two cell surface receptors have 
been identified and demonstrated to promote fat-
mediated CCK release. Mice with global deletion 
of GPR40 show partial reduction in CCK secretion 
following fatty acid administration (193). The 
recently discovered immunoglobulin-like domain 
containing receptor (ILDR) is expressed in I cells 
of the duodenum. ILDR appears to play an 
essential role in fat-stimulated CCK release as 
deletion of ILDR in mice completely eliminates 
fatty acid-stimulated CCK secretion (39). 
Thus fats and fatty acids are important regulators 
of pancreatic secretion. Experimental evidence 
suggests that the degree and extent of acinar and 
ductal cell activation may vary depending on the 
animal species and the route of fat administration. 
 
Contributions of Proteins, Peptides and Amino 
Acids to Pancreatic Secretion 
Studies performed in dogs, rats, and humans 
have shown that proteins, peptides, and amino 
acids stimulate pancreatic secretion while the 
magnitude of this effect may be dependent on the 
species being evaluated (311). In dogs, intact, 
undigested proteins such as casein, albumin, and 
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gelatin did not stimulate pancreatic secretion, 
whereas protease digests of these proteins were 
very effective (215). In contrast, studies in rats 
suggested that intestinal administration of 
hydrolyzed casein produced a smaller response 
than some of the other proteins which potently 
stimulated pancreatic enzyme secretion, 
suggesting that the amino acid composition of a 
protein is relevant in determining the extent of 
stimulation (96, 189). 
 
Although intravenous infusion of amino acids in 
humans stimulated pancreatic enzyme and 
bicarbonate secretion, a mixture of L-amino acids 
when infused intravenously in dogs was not 
effective. In contrast to intravenous infusion, 
intraduodenal delivery of amino acids in dogs 
induced pancreatic fluid, bicarbonate and protein 
secretion which was comparable to an elemental 
diet suggesting the importance of the route of 
administration on pancreatic secretion (315, 344). 
Only L-amino acids stimulate pancreatic secretion 
which is consistent with the overall physiological 
importance of these stereoisomers. Of all the 
amino acids, aromatic amino acids such as 
phenylalanine and tryptophan have the greatest 
potency (76, 213, 217).  
 
Although aromatic amino acids are highly 
effective in stimulating pancreatic secretion, 
peptides may be more physiologically relevant as 
they are more abundant than amino acids in the 
intestinal lumen (46). Oligopeptides and longer 
peptides containing the amino acids 
phenylalanine and tryptophan are effective 
stimulants of pancreatic secretion (215, 216). 
Acidification of amino acid (166, 213) and peptide 
(76) preparations with hydrochloric acid 
potentiates the bicarbonate response but 
pancreatic enzyme secretion is not influenced 
beyond that observed in the absence of acid. 
Aromatic amino acids are capable of inducing 
maximal secretory response as potentiation of 
pancreatic enzyme secretion is not observed 
when amino acids or peptides are administered 
concomitantly with lipid molecules such as oleate 
or monoolein (75, 202).  

The pancreatic secretory response to 
intraduodenal administration of amino acids 
appears to be concentration dependent. A 
minimal concentration of 8 mM is necessary for 
stimulation by most amino acids (217) although 
the more potent aromatic amino acids such as 
tryptophan stimulate secretion at concentrations 
as low as 3 mM (305). The length of the intestine 
exposed to amino acids also plays a critical role in 
pancreatic secretion. In dogs, exposure of the first 
10 cm was least effective, while perfusion of the 
whole intestine produced significant enzyme 
output (217) suggesting that the pancreatic 
response was dependent upon the entire load of 
nutrients, not just their concentration. The majority 
of stimuli responsible for pancreatic stimulation 
originate in the proximal small intestine. In 
humans, amino acids stimulated pancreatic 
secretion only when perfused into the duodenum 
and no response was observed upon perfusion in 
the ileum (63). Therefore, similar to fats, the 
primary mechanisms that stimulate pancreatic 
secretion are limited to the proximal regions of the 
small intestine.  
 
The amount of bicarbonate released by 
intraluminal administration of tryptophan is similar 
to that produced by maximal doses of 
exogenously infused CCK indicating that release 
of CCK by tryptophan leads to pancreatic 
secretion (52, 202, 215). Similarly, intraduodenal 
administration of liver extracts in dogs mediated 
CCK release along with pancreatic enzyme and 
bicarbonate secretion, both of which were blocked 
by CCK receptor antagonists (234). Bile acids 
released from the gallbladder can significantly 
inhibit pancreatic stimulation induced by 
intraluminal amino acids. This inhibition of 
pancreatic secretion by bile acids appears to be 
due to inhibition of CCK release and serves as a 
feedback mechanism in regulating pancreatic and 
gallbladder function (202). By using a sensitive 
bioassay for CCK measurement, it was shown 
that one of the pathways by which proteins 
stimulate CCK release is by their ability to inhibit 
intraluminal trypsin activity (189). Another 
mechanism by which aromatic amino acids 



7 

mediate CCK release is by activation of the 
calcium sensing receptor (CaSR), a known 
nutrient sensor (117, 194, 240, 336). In addition to 
stimulating the release of hormones such as CCK 
and secretin, amino acids also activate cholinergic 
neural mechanisms which regulate pancreatic 
bicarbonate secretion (305).  
  
Hence proteins, peptides, and amino acids 
stimulate pancreatic secretion but the magnitude 
of stimulation depends upon the mode of 
administration and the species being evaluated. 
 
Role of Bile and Bile Acids in Pancreatic 
Secretion 
Bile is produced by hepatocytes as a complex 
mixture of bile acids, cholesterol, and organic 
molecules. It is stored and concentrated in the gall 
bladder and released into the duodenum upon 
entry of chyme. Bile acids such as cholate, 
deoxycholate, and chenodeoxycholate are 
conjugated with glycine or taurine amino acids 
which increase their solubility. In the intestine, bile 
acids assist in the emulsification and absorption of 
fatty acids, monoacylglycerols, and lipids and 
stimulate lipolysis by facilitating binding of 
pancreatic lipase with its co-lipase. 
 
Under basal conditions, intraduodenal 
administration of physiological concentrations of 
bile or the bile salt sodium taurocholate, elevated 
plasma secretin and stimulated pancreatic fluid 
secretion in cats (104, 105). Secretin was 
released only in response to perfusion of sodium 
taurocholate in the duodenum. Perfusion in the 
upper jejunum produced a significantly diminished 
pancreatic response, while no response was 
observed upon ileal perfusion (107). Pancreatic 
fluid secretion was stimulated by the free ionized 
form of taurocholate and was not dependent on its 
detergent properties (98). In humans, infusion of 
bovine bile augmented secretin release along with 
pancreatic exocrine secretions of fluid, 
bicarbonate, and enzymes (253, 254).  
 
In addition to secretin, infusion of bovine bile and 
bile acids in humans and dogs was shown to 

stimulate the release several hormones and 
neuropeptides such as CCK, neurotensin, VIP, 
gastric inhibitory peptide (GIP), PP, and 
somatostatin (34, 42, 274, 276). Fluid and 
bicarbonate release was enhanced when elevated 
levels of VIP were present in the plasma, 
suggesting that bile activates peptidergic nerves 
resulting in pancreatic secretion. Additionally, 
cholinergic mechanisms are also important as 
atropine blocked bile- and taurocholate-stimulated 
exocrine pancreatic secretion (276). The 
composition of bile is important in mechanisms 
regulating this secretory response as some 
differences in hydrokinetic and ecbolic responses 
were observed with administration of bile versus 
various bile acids (273). 
 
However, a stimulatory effect of bile acids on 
pancreatic fluid secretion was not observed in the 
presence of digestive intraluminal contents (27). 
In some studies where bile acids were 
administered concomitantly with amino acids or 
fat, an inhibition of pancreatic enzyme secretion 
was observed. The mechanism underlying this 
observation is not completely understood, 
although it is possible that bile acids inhibit CCK 
release by a negative feedback mechanism which 
helps to relax and refill the gallbladder (24, 171, 
202, 248). Chemical sequestration of bile acids in 
dogs augmented the release of CCK and 
pancreatic enzyme secretion in response to 
amino acids and addition of taurocholate reversed 
this effect (89). Long term diversion of bile in dogs 
also augmented basal and oleate-stimulated 
pancreatic fluid, bicarbonate, and enzyme 
secretion along with plasma CCK levels, further 
supporting the role of bile acids in inhibiting CCK 
release (319). 
 
Other studies have shown that the bile salt 
chenodeoxycholate when infused in humans, 
inhibited bombesin- and CCK-stimulated 
gallbladder emptying along with elevation of 
plasma CCK levels. These results led the authors 
to hypothesize that chenodeoxycholate, by a yet 
unknown mechanism, reduced the sensitivity of 
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the gall bladder to stimulation by bombesin and 
CCK (326).  
 
In contrast to many species including mice and 
humans, rats do not possess a gallbladder and 
multiple pancreatic ducts join the lower end of the 
common bile duct. In rats, diversion of bile and 
pancreatic juice stimulates the release of 
pancreatic enzymes. This augmentation of 
enzyme secretion has been suggested to 
compensate for the increased degradation of 
proteolytic enzymes in the absence of bile. Thus 
exocrine secretion in rats is regulated by a luminal 
feedback mechanism (93, 225). Additional 
experiments have shown that certain bile salts 
stimulate bicarbonate secretion via CCK release 
whereas other bile salts inhibit exocrine secretion 
(223, 226, 227). Two inhibitory mechanisms have 
been proposed – one dependent on the 
stabilization of luminal proteases and the other 
independent of protease activity (228). Stimulation 
of pancreatic fluid secretion in anesthetized rats 
has been demonstrated to be mediated by 
taurocholate induced transcription of Na+/K+/2Cl- 
cotransporter, which plays a key role in regulating 
the entry of Cl- from the basolateral surface of 
acinar cells. 
 
The physiological role of bile and bile salts in 
regulating pancreatic secretions is not completely 
understood and appears to be dependent on 
multiple factors, including the chemical properties 
of bile salts, the animal model being evaluated, 
and prandial status of the animal being studied 
(275). 
 
Absorbed Nutrient Phase  
Once nutrients are absorbed from the intestinal 
lumen, they may directly stimulate pancreatic 
secretion leading to the absorbed nutrient phase. 
Nutrients can either directly stimulate pancreatic 
acinar cells, or they may indirectly activate 
hormonal and neural pathways to further regulate 
exocrine secretion. Little conclusive evidence is 
available for intravenous lipids and glucose in 
stimulating pancreatic secretion (187). However, 

intravenous administration of amino acids 
increases the amount of trypsin and chymotrypsin 
secretion, but not lipase or amylase (88). Amino 
acids appear to have a substantial indirect effect 
on pancreatic secretion, since intraduodenal 
administration of amino acids produces large 
increases in pancreatic secretion (168, 218, 278). 
The role of nutrients after absorption on 
pancreatic secretion is not well understood and 
additional studies are needed to fully investigate 
these effects. One effect is to stimulate synthesis 
of new digestive enzymes to replenish the 
pancreatic supply. 
 
Feedback Regulation of Pancreatic 
Secretion 
The concept of feedback regulation of pancreatic 
secretion emanated from a series of studies 
demonstrating that (1) instillation of trypsin 
inhibitor into the upper small intestine or (2) 
surgical diversion of the bile-pancreatic duct 
removing bile and pancreatic juice from the 
duodenum of rats stimulated pancreatic enzyme 
secretion (95). Conversely, infusion of trypsin into 
the duodenum during bile-pancreatic juice 
diversion suppressed pancreatic enzyme release. 
Thus, the protease concentration in the upper 
small intestine appears to be intimately linked to 
pancreatic secretion through a negative feedback 
system in which active proteases within the 
duodenum limit pancreatic secretion but reduced 
protease activity stimulates pancreatic secretion. 
When assays for CCK became available, it was 
shown that CCK mediated the effects of 
proteases on pancreatic secretion (186) through 
protease-sensitive CCK releasing factors (115, 
314) (see Figure 1). In the absence of proteases, 
CCK releasing factor can stimulate CCK cells, but 
in the presence of proteases, the releasing factors 
are inactivated and CCK secretion is low. 
Negative feedback regulation of pancreatic 
secretion has been shown to exist in many 
species although other proteases such as 
elastase may be more important in regulating 
pancreatic secretion in humans. 
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Figure 1. Feedback regulation of pancreatic exocrine secretion is mediated by positive and negative 
mechanisms. Positive feedback: Monitor peptide is secreted by acinar cells and directly stimulates CCK cells in 
the small intestine and amplifies pancreatic secretion once it has been initiated. Negative feedback: Trypsin-
sensitive CCK releasing factors are produced by the intestine and stimulate CCK secretion when trypsin is 
temporarily consumed by ingested protein or other trypsin “inhibitors”. 
 
Pancreatic exocrine secretion is also influenced 
through a positive feedback mechanism. Monitor 
peptide is a 61 amino acid peptide produced by 
pancreatic acinar cells and possessing CCK 
releasing activity. Although monitor peptide has 
modest trypsin inhibitor capability, its ability to 
stimulate CCK is independent of this action 
because monitor peptide can directly stimulate 
CCK secretion from isolated CCK cells in vitro 
(28, 190).  
 
Monitor peptide is secreted in pancreatic juice, 
therefore, it does not stimulate CCK secretion 
unless pancreatic secretion is underway. Thus, 
monitor peptide cannot account for the increase in 
CCK in during bile-pancreatic juice diversion, but 
it may serve to reinforce pancreatic secretion 
once the process has been initiated. 
 
3. Pancreatic Exocrine Secretion 

The exocrine pancreas delivers its secretions of 
digestive enzymes, fluid, and bicarbonate ions to 
the duodenum following ingestion of food. The 
pancreas is composed of both endocrine and 
exocrine components. The endocrine pancreas is 
comprised of α, β, δ, ε, and PP (F) cells, which  

 
are located in the islets of Langerhans. These 
specialized cells secrete the hormones insulin, 
glucagon, somatostatin, ghrelin, amylin, and 
pancreatic polypeptide into the blood, which exert 
endocrine and paracrine actions within the 
pancreas. Ninety percent of the pancreas is 
composed of acinar cells which secrete digestive 
enzymes such as trypsin, chymotrypsin, and 
amylase for digestion of food in the small 
intestine. The acinar cells are triangular in shape 
and arranged in clusters with the apex of the cell 
opening into a centrally located terminal duct. The 
terminal or intercalated ducts merge to form 
interlobular ducts, which in turn congregate to 
form the main pancreatic duct. The pancreatic 
duct delivers exocrine secretions into the 
duodenum. The ductal cells secrete fluid and 
bicarbonate ions, which neutralize acinar cell 
secretions, as well as the acidic gastric contents 
entering the duodenum (110). The pancreas is 
heavily innervated by sympathetic and 
parasympathetic peripheral nerves and contains a 
dense network of blood vessels which regulate 
blood flow and modulate pancreatic secretion.  
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Pancreatic exocrine secretion is a highly 
integrated process mediated by neural and 
hormonal signals arising from the gut as well as 
by factors secreted by other tissues and 
hormones released from pancreatic islets. The 
secretory pathways can be stimulatory or 
inhibitory in nature, and represent a highly 
regulated system that responds to ingestive 

signals. The agents that modulate pancreatic 
exocrine secretion are discussed below (Table 1). 
 
Neural Mechanisms 
 
Neural Innervation 
The pancreas is innervated by parasympathetic 
nerve fibers, postganglionic sympathetic neurons, 
as well as a network of intrapancreatic nerves. 
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Together these nerves regulate pancreatic 
exocrine function by releasing neurotransmitters 
such as acetylcholine and neuropeptides such as 
VIP, GRP, serotonin, and neuropeptide Y (NPY). 
The pancreatic ganglia receive input from pre- 
and post-ganglionic nerve fibers and regulate 
exocrine and endocrine secretion.  
 
Intrapancreatic postganglionic neurons are 
activated by central input during the cephalic 
phase and by vagovagal responses initiated 
during the gastric and intestinal phases of 
stimulation. They stimulate enzyme and 
bicarbonate secretion primarily by releasing 
acetylcholine, which activates muscarinic 
receptors located on acinar and duct cells.  
 
Vagal Innervation 
The dorsal vagal complex in the brainstem is 
comprised of the nucleus of the solitary tract and 
the dorsal motor nucleus of the vagus (DMV) and 
exerts parasympathetic control on pancreatic 
secretion. Information relayed by sensory vagal 
afferent nerves innervating the pancreas is first 
processed in the nucleus of the solitary tract, 
which then projects onto the preganglionic motor 
neurons of the DMV. The DMV receives inputs 
from other regions of the brain such as the 
hypothalamus and from numerous hormones and 
neuropeptides through the afferent limb of the 
vagus nerve. 
 
Parasympathetic preganglionic efferent vagal 
nerves innervating the pancreas originate 
primarily from the DMV and terminate in the 
pancreatic ganglion. Electrical and chemical 
stimulation of the DMV induces rapid pancreatic 
secretion, and this response is inhibited by 
vagotomy or blockade of muscarinic receptors by 
atropine (239). It has been suggested that vagal 
cholinergic neurons mediate pancreatic secretion 
during low loads of intestinal stimulants whereas 
hormones mediate the response during high loads 
of intestinal stimuli (245, 304). 
 
CCK affects pancreatic secretion through both a 
direct effect on pancreatic acinar cells and an 

indirect effect on the vagus nerve (Figure 2). 
However, the effects on the vagus nerve are 
complex and the firing response of neurons in the 
DMV complex appears to be dictated by their 
spatial location. In one study, neurons in the 
caudal region were activated, those in the rostral 
region were unaffected, while neurons in the 
intermediate region were inhibited by a direct 
action of CCK (238). Although it is not fully 
understood, it appears that CCK’s effects on the 
vagus nerve influences the overall pancreatic 
secretory response. 
 
The exocrine pancreas is regulated directly by the 
vagus. Studies with muscarinic receptor knockout 
mice demonstrated that both M1 and M3 
receptors mediate amylase release from 
dispersed acini. It is likely that M3 receptors are 
more relevant physiologically since the level of M3 
receptor expression was significantly higher in 
acinar cells (87) and M1 receptors were found to 
have only a minor effect on bicarbonate secretion 
in conscious dogs (325). 
 
The vagus nerve also possesses group II 
metabotropic glutamate receptors that couple 
primarily to Gi/o. These receptors are located on 
excitatory and inhibitory pre-synaptic terminals of 
pancreas-projecting DMV neurons (10) that are 
also activated by CCK and pancreatic 
polypeptide. Thus, in addition to γ-amino butyric 
acid, glutamate also modulates pancreatic 
exocrine secretion through distinct vagal neurons. 
 
Vasoactive Intestinal Peptide 
VIP is a 28 amino acid neuropeptide that is found 
throughout the body. Immunocytochemical 
evidence suggests that VIP is localized in 
pancreatic nerve fibers and functions as a vagal 
neurotransmitter. In the chick, VIP 
immunoreactive nerve endings are found in close 
proximity to acinar cells and epithelial cells of 
arterioles. Small clear vesicles were present in 
VIP-positive nerves indicating that these neurons 
are were also cholinergic in nature (118).
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Figure 2. CCK stimulates pancreatic secretion through hormonal and neuronal pathways. CCK is released from I 
cells of the small intestine and diffuses into the blood stream where it is carried to the pancreas. CCK binds to 
receptors on acinar cells to stimulate pancreatic enzyme secretion. Secreted CCK also diffuses through the 
paracellular space and binds to CCK1 bearing nerves in the submucosa. Vagal afferent signals are integrated in 
the dorsal vagal complex which also receives signals from other regions of the brain (e.g., hypothalamus). Vagal 
efferent fibers transmit cholinergic signals to the pancreas to stimulate pancreatic secretion. 
 
In normal human pancreas, autonomic ganglia 
receive an abundant supply of VIP-positive fiber 
plexi, and VIP-positive nerves and appeared to 
innervate acinar cells, ducts, and blood vessels 
(204). After atropine treatment, electrical 
stimulation of the vagus still increased 
bicarbonate secretion concurrent with detection of 
VIP in pancreatic venous effluent suggesting that 
VIP release is coupled with bicarbonate secretion 
(70). The effects of VIP are especially prominent 
in the pig as perfusion of the pancreas with VIP 
antibodies inhibited fluid and bicarbonate 
secretion, and treatment of rats with a VIP 
antagonist reduced bicarbonate secretion 
concomitant with vasodepression further 
supporting a direct relationship (120, 337). High 
and low affinity VIP receptors have been identified 
on pancreatic acinar membranes. The high affinity  
receptors are coupled to cAMP-mediated amylase 
release, while activation of low affinity receptors  

 
did not cause cAMP elevation or amylase release, 
suggesting that only high affinity receptors are 
important in protein secretion (23). These effects 
of VIP were attenuated by somatostatin and 
galanin, which reduced VIP-mediated fluid and 
protein output (123). One of the main functions of 
VIP appears to be increasing blood flow by 
vasodilation, and as a result its effects on 
pancreatic secretion independent of blood flow in 
the pancreas are difficult to evaluate (9, 170). 
 
Gastrin Releasing Peptide 
Gastrin releasing peptide (GRP) is a 27 amino 
acid neuropeptide that is present in post-
ganglionic vagal afferents and has been detected 
in neurons innervating the feline, porcine, rodent, 
and human pancreas (231). Receptors responsive 
to GRP have been identified in rat pancreatic 
membranes and cancer cells where they mediate 
enzyme secretion (103, 146). In the cat, GRP is 
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present in intrapancreatic ganglia, acinar and 
stromal regions, and occasionally on the 
vasculature and ducts (51). In humans, the 
pattern of GRP expression was similar to that of 
VIP; GRP was localized on nerve fibers in 
proximity to pancreatic acini, capillaries, ductules, 
and arterial walls (298). Several studies in 
different species have demonstrated that GRP 
modulates exocrine secretion (342). Vagal 
stimulation of porcine pancreas resulted in GRP 
release which enhanced pancreatic exocrine 
secretion (157). In isolated perfused rat 
pancreatic preparations, electrical field-stimulated 
GRP release potentiated secretin-mediated fluid 
and amylase secretion through a non-cholinergic 
pathway (264). The effects of GRP on rat 
pancreatic exocrine secretion were enhanced by 
γ-amino butyric acid (266). Neuromedin C, a 
decapeptide of GRP, also enhanced pancreatic 
secretion by direct action on canine acinar cells 
as well as indirectly by stimulating CCK release 
(128, 129). However, since bombesin (GRP 
analog) does not stimulate pancreatic secretion in 
dogs, it appears that its effects may be dependent 
on the species being evaluated (167). For more 
details on bombesin see (342). 
 
Other Peptide Neurotransmitters 
Immunohistochemical staining has revealed that 
the neuropeptides listed below are present in 
pancreatic nerves and their functional significance 
and ability to regulate pancreatic secretion has 
been demonstrated by in vitro and/or in vivo 
studies.  
 
PACAP: Pituitary adenylate cyclase-activating 
polypeptide (PACAP) has been identified in nerve 
fibers and intrapancreatic ganglion in rodents 
(79). PACAP has been shown to evoke 
bicarbonate and enzyme secretion from the 
pancreas albeit with a slower time course than 
VIP (7, 337). In the acinar cell line AR42J, PACAP 
activated phospholipase C, which led to elevation 
of intracellular Ca2+ and amylase release (13). For 
more details on PACAP and pancreatic secretion 
see (91). 
 

Neurotensin: Neurotensin is a 13 amino acid 
neuropeptide that is widely expressed in the 
central nervous system and is also present in 
pancreatic nerves. It stimulates amylase secretion 
and its effects are potentiated by carbachol (a 
cholinergic agonist), secretin, and caerulein (a 
CCK analog) (11, 73). Other studies 
demonstrated that neurotensin stimulates 
bicarbonate, but not protein secretion in dogs and 
may act indirectly by stimulating dopamine 
release (134). 
 
Substance P: Substance P is expressed in 
periductal nerves in the guinea pig pancreas and 
inhibits ductal bicarbonate secretion by 
modulating neurokinin 2 and 3 receptors (111, 
152, 159). It enhanced caerulein-stimulated 
enzyme secretion in isolated perfused pancreas 
as well as in anesthetized rodents (148).  
 
CGRP: CGRP is a 37-amino acid peptide that is 
present in central and peripheral neurons. The 
effect of CGRP on exocrine secretion is not clear 
and may be species specific. Interaction of CGRP 
with receptors on guinea pig acinar cells led to 
amylase release, although its effect was not as 
potent as VIP (295). In rat acinar cell 
preparations, CGRP inhibited amylase release by 
a mechanism involving cholinergic (muscarinic) 
neural pathways (33).  
 
NPY: NPY, a 36 residue peptide, is expressed in 
intrapancreatic ganglia and nerve fibers that 
surround exocrine pancreatic tissue (296). NPY 
inhibited CCK- and vagally-mediated amylase 
secretion from intact pancreas and lobules, but 
not from dispersed acini, suggesting that its 
actions were mediated by neurons innervating the 
exocrine pancreas (235). Other evidence 
suggests that NPY plays at best only a modest 
role in pancreatic exocrine secretion (122). 
 
CCK: The presence of CCK in intrapancreatic 
nerves has led to the suggestion that it may serve 
a dual role as neurotransmitter and hormone in 
pancreatic secretion. However, CCK could not be 
detected in the venous effluent of isolated 
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perfused porcine pancreas after vagal stimulation 
following a meal (120) suggesting that synaptic 
release of CCK does not occur within the 
pancreas. Therefore, the role of CCK as a 
neurotransmitter in pancreatic secretion merits 
further investigation.  
 
Peptide Histidine Isoleucine: Peptide histidine 
isoleucine (PHI) is a 27 amino acid peptide with 
an N-terminal histidine and C-terminal isoleucine, 
and is derived from the same precursor molecule 
as VIP. It is present in pancreatic nerves and 
ganglia and stimulates fluid and bicarbonate 
secretion in a cAMP-dependent fashion (136, 
296). 
 
Adrenergic Nerves 
Compared to cholinergic stimulation, adrenergic 
nerves play a relatively minor role in pancreatic 
exocrine secretion. Catecholamine-containing 
nerves are found in the celiac ganglion, and 
extend to intrapancreatic ganglia, blood vessels, 
ducts, and islets (176). Epinephrine and 
norepinephrine (NE) evoked amylase release 
from superfused rat pancreatic preparations, 
similar to that induced by electrical stimulation in 
the presence of cholinergic blockade (309). This 
process is dependent on elevated intracellular 
Ca2+ and inhibited by propranolol, suggesting that 
β-adrenergic receptors are involved (268). 
Catecholamines also interact with α-adrenergic 
receptors expressed in pancreatic acini and inhibit 
amylase secretion (333). NPY is coexpressed 
with NE in some nerve fibers, and stimulation of 
splanchnic nerves leads to the release of NPY 
and NE (38, 296). Infusion of PACAP into the 
pancreatoduodenal artery enhanced release of 
NE after electrical stimulation of nerves. However, 
the physiological relevance of this observation is 
not clear (347). 
 
Celiac denervation reduces pancreatic secretion 
by ~70% while increasing blood flow by 350%. 
This dissonance presumably occurs by the 
disruption of stimulatory fibers and sympathetic 
fibers that maintain tonic constriction of pancreatic 
vessels (156). The effect of adrenergic 

transmitters on pancreatic secretion has been 
difficult to discern due to the wide-ranging effects 
of norepinephrine on multiple processes including 
blood pressure, blood flow, neural reflexes, and 
release of hormones. Even though high 
concentrations of norepinephrine have been 
found in rabbit pancreatic ganglia, ducts, and 
blood vessels, its effects are controversial (348). 
Norepinephrine has been reported to stimulate, 
inhibit, or have no effect on pancreatic secretion 
(12, 41, 60, 84, 176, 183, 312). Unfortunately α- 
and β- adrenergic receptor agonists and 
antagonists have not provided information that 
could be used to delineate mechanisms important 
in adrenergic regulation of pancreatic secretion 
(40, 61). 
 
Dopamine 
Dopamine was detected in pancreatic ducts and 
ampullae and dopamine β-hydroxylase (DBH) -
positive fibers were identified along the 
vasculature, ducts, and ganglia suggesting it may 
play some role in pancreatic secretion (198, 348). 
There is conflicting evidence regarding the role of 
dopamine in pancreatic secretion. Dopamine 
stimulates pancreatic secretion in anesthetized 
dogs and rats although the effect is negligible in 
conscious animals (17, 55, 60, 84, 131, 135). 
Other data suggest that the secretory response to 
dopamine differs between dogs, cats, rabbits and 
rats, and species specific effects must be taken 
into consideration when evaluating its effects 
(109).  
 
Serotonin 
Like dopamine, serotonin is present in pancreatic 
ducts and ampullae. Autoradiography of tissue 
sections after tritiated serotonin uptake 
demonstrated the presence of serotonergic 
innervation of blood vessels, but not exocrine 
parenchyma in rats, suggesting a limited role in 
pancreatic secretion (158, 348). However, 
phenylbiguanide, a 5-HT3 receptor agonist, 
activated preganglionic neurons located in the 
caudal DMV, inhibited those in the intermediate 
DMV, and had no effect on rostral DMV neurons, 
suggesting complex spatial regulation of 
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pancreatic vagal neurons by serotonin (238). 
Intraduodenal infusion of melatonin (a serotonin 
derivative) increased pancreatic amylase 
secretion, while pretreatment with 5-HT2 
serotonin antagonist ketanserin or the 5-HT3 
antagonist MDL72222 decreased amylase 
release. Serotonin-induced amylase release was 
blocked by bilateral vagotomy supporting a role 
for serotonergic mechanisms on exocrine 
secretion (243).  
 
Nitric Oxide 
Nitric oxide (NO) is a gaseous signaling molecule 
that is synthesized by NO synthase (NOS) from L-
arginine in the presence of nicotinamide adenine 
dinucleotide hydrogen phosphate (NADPH). It is a 
potent vasodilator and modulates secretory 
activity as well as pancreatic blood flow in the 
pancreas (44). Because it is not practical to 
directly measure NO in biological tissues, the 
presence of NO has been identified by expression 
of NOS or histochemistry of NADPH diaphorase 
(NADPH-d), since NOS and NADPH-d colocalize 
in neurons of the peripheral and central nervous 
systems. The actions of NO in tissues have been 
identified by the use of NO donors, NOS 
inhibitors, and agents that inactivate (e.g. 
superoxide-generating compounds) or stabilize 
NO (e.g., superoxide dismutase). Unlike ligands 
that signal through cell surface receptors, NO 
penetrates cells and activates guanylate cyclase 
to generate the second messenger cGMP (345). 
 
Immunostaining of pancreas from a wide range of 
mammals (mouse, rat, hamster, guinea-pig, cat 
and man) indicates that NOS is expressed in the 
cell bodies of intrapancreatic ganglia, interlobular 
nerve fibers, and along blood vessels. VIP is 
sometimes co-expressed with NOS in ganglia and 
nerve fibers. These studies suggest that NO is 
important in pancreatic exocrine secretion (66). In 
newborn guinea pig, nitrergic neurons were 
present primarily in the head and body of the 
pancreas, along blood vessels, the main 
pancreatic duct, and in association with 
pancreatic acini (195). These nerves also 
immunostained with antibodies against NPY, VIP, 

and DBH indicating complex co-regulation of 
pancreatic secretion by various neurotransmitters. 
 
In rat pancreas, the NO donor sodium 
nitroprusside and cGMP analog 8-bromo cGMP, 
inhibited basal and vagal amylase secretion 
through a Ca2+-dependent mechanism (68, 346). 
The G protein-coupled receptor, protease-
activated receptor-2 (PAR-2) modulates NO-
mediated amylase release in mice, and inhibition 
of NOS abolished PAR-2 mediated amylase 
release suggesting that the effects of NO may be 
mediated by neuronal release of a PAR-2 agonist. 
Ablation of sensory nerves by capsaicin did not 
affect PAR-2 mediated amylase release, 
suggesting that TRPV1-expressing sensory vagal 
fibers are not involved in this pathway (150). 
Analysis of the effects of NO on pancreatic 
secretions in pigs support the findings that NO is 
essential for pancreatic fluid and amylase 
secretion mediated by the vagus nerve (124). 
Thus, in addition to maintaining the vascular tone, 
nitrergic nerves play an important role in 
pancreatic fluid and amylase release.  

 
Stimulatory Hormones 
 
Cholecystokinin 
CCK is released from specialized enteroendocrine 
cells (I cells) located mainly in the upper small 
intestine. The major stimulants of CCK release 
are dietary fats and proteins. In the rat, 
intraluminal proteases via an active feedback 
system participate in the release of a putative 
intestinal CCK releasing factor (e.g., LCRF) which 
in turn causes CCK secretion (115, 314). Various 
molecular forms of CCK, ranging in size from 
CCK-8 [CCK-(26-33)-NH2] to CCK-58, have been 
described in dogs, rats, and humans (65, 69, 
329). CCK-58, was determined to be the 
predominant peptide in dogs and humans, and 
the only form detected in rats after employing 
CCK isolation techniques that prevented 
degradation of CCK in blood (272). The actions of 
CCK-8 and CCK-58 appear to be functionally 
identical suggesting that CCK-8 retains the 
biological activity ascribed to this hormone (49). 
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CCK is post-translationally modified and has an 
amidated C-terminus. A sulfated tyrosine residue 
in CCK-8 is important for its biological actions 
including exocrine secretion (141, 285). C-
terminal amidation is critical for binding of CCK to 
its receptors and removal of the amide group 
decreases CCK activity. Other studies have 
reported that deamidation and desulfation, do not 
significantly impair the ability of CCK to stimulate 
amylase release and these discrepancies may 
arise from differences between species. Shorter 
forms of CCK such as the tetrapeptide CCK-4, are 
generally much less effective in mediating 
exocrine secretion than CCK-8, while longer 
forms of CCK, such as CCK-33 are equally 
effective (64, 86, 251, 255). 
 
CCK mediates its hormonal effects through two 
G-coupled protein receptors, CCK-1 and CCK-2, 
previously known as CCK-A and CCK-B, 
respectively. The contribution of these receptors 
to pancreatic secretion has been evaluated in 
order to delineate the molecular mechanisms of 
CCK action. CCK receptors have been proposed 
to exist in two states, a high affinity (picomolar) 
but low capacity state, and a low affinity 
(nanomolar) but high capacity state (322, 332). 
Autoradiography of pancreatic membranes 
incubated with radioiodinated CCK-8 
demonstrated that CCK-1 receptors are highly 
expressed in rat pancreas, while CCK-2 receptors 
are less abundant. CCK-1 receptors appear to 
modulate pancreatic secretion as oral 
administration of loxiglumide, a potent CCK-1 
receptor antagonist, reduces protein and fluid 
output in rats (132). Similarly, caerulein-induced 
pancreatic amylase release was blocked by CCK-
1 receptor antagonists (99). CCK-8 also did not 
induce amylase release in CCK-1 receptor 
knockout mice confirming that CCK-1 receptors 
are critical for CCK-mediated protein secretion 
(172). Since bicarbonate secretion was not 
observed from dispersed acinar cells this effect is 
not believed to be regulated by CCK receptors 
(320). Pancreatic responses in CCK-2 receptor 
knockout mice were similar to wild type mice 
suggesting that CCK-2 is not important for 

amylase release, although it may be involved in 
augmenting vascular flow (99, 230). In pigs, 
where a majority of receptors are of the CCK-2 
subtype, acinar cells demonstrated a low 
responsivity to CCK and did not secrete amylase 
in response to caerulein or a CCK-1 agonist 
(233). In humans, the actions of CCK on 
pancreatic secretion have been variously 
reported. Infusion of CCK, caerulein, and secretin 
in the presence of amino acids substantially 
increased output of fluid, bicarbonate, and 
enzyme (162, 318). Similar to porcine pancreas, 
CCK-2 is the major CCK receptor subtype 
expressed in human pancreas, although 
interestingly CCK-1 receptor antagonists are able 
to inhibit amylase secretion (3, 270, 321). In 
dispersed human acini which responded to 
carbamylcholine and neuromedin C, CCK did not 
stimulate amylase release presumably because of 
a paucity of cellular membrane receptors. It has 
been proposed that the effects of CCK on human 
pancreatic secretion are mediated through CCK-1 
receptors on nerves which innervate the pancreas 
(142, 229). However, recent data demonstrated 
that application of physiologic concentrations of 
CCK-8 and CCK-58 to human acinar cells 
produced intracellular Ca2+ oscillations and normal 
exocytosis of pancreatic enzyme, suggesting that 
functional CCK receptors are expressed on 
human pancreas (237). Thus, it appears that CCK 
receptors are expressed on acinar cells of both 
human and rodent pancreas, and the differences 
between the two may not be as great as 
previously predicted.  
 
Recently it was shown that rat and human 
pancreatic stellate cells express CCK receptors 
and secrete acetylcholine in response to CCK 
stimulation. This source of acetylcholine was 
sufficient to stimulate amylase release from acinar 
cells. Pancreatic stellate cells may represent a 
previously unrecognized intrapancreatic pathway 
regulating CCK-induced pancreatic exocrine 
secretion (269). 
 
Several hormones and neuropeptides regulate 
CCK-mediated exocrine secretion. Locally, insulin 
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has been shown to influence exocrine secretion. 
Intra-arterial infusion of canine pancreas with anti-
insulin antibodies, prevented CCK stimulation as 
well as secretin-mediated protein and fluid 
secretion from canine pancreas (178). Secretin 
potentiated, as well as attenuated, CCK-mediated 
amylase secretion by the inositol signaling 
pathway while VIP enhanced CCK-mediated 
enzyme secretion (35, 36). Peptide YY (PYY), PP, 
and somatostatin also inhibited CCK-mediated 
protein secretion and their effects are discussed 
later in this review. 
  
The mechanism of CCK-induced amylase 
secretion, involves transient elevation in 
intracellular Ca2+ (257). It also requires 
phospholipase C activation and generation of 
second messengers inositol trisphosphate and 
diacylglycerol (259). In some instances, CCK 
activates secretion by elevation of cAMP, as 8-
bromo-cAMP and a phosphodiesterase inhibitor 
augmented CCK-mediated amylase release (35). 
Heterotrimeric G proteins Gα13 and Gαq through 
downstream interactions with small GTP binding 
proteins RhoA and Rac1 regulate actin 
cytoskeleton reorganization which is required for 
exocytosis (280, 343).  
 
Secretin 
Secretin is a 27 amino acid hormone released by 
S cells of the small intestine (340). Secretin 
release is stimulated during the intestinal phase 
upon entry of gastric acid and ingested fatty acids 
into the duodenum (71). It augments fluid and 
bicarbonate secretion and is one of the most 
potent stimulators of pancreatic secretion (43). 
Examination of pancreatic ultrastructure shortly 
after secretin injection revealed that fluid is 
secreted by duct as well as acinar cells (26). 
 
Large increases in pancreatic fluid and 
bicarbonate secretion have been demonstrated 
with secretin infusions as low as 1-2.8 pmol/kg∙hr 
(19, 102, 290, 350). In humans, bolus injections of 
secretin as low as 0.125 pmol/kg stimulated fluid 
and bicarbonate secretion (145, 289). Although 
secretin is believed to be the single most powerful 

stimulator of pancreatic bicarbonate secretion, 
infusion of exogenous secretin equivalent to 
postprandial blood levels only produced 10% of 
the maximal pancreatic bicarbonate secretory 
response suggesting that other hormones and 
neurotransmitters play important roles in 
postprandial pancreatic bicarbonate secretion in 
humans (289, 290). Secretin receptors have been 
localized in acinar and duct cells in the rat 
pancreas (330).  
Secretin stimulates the release of fluid and 
bicarbonate, and to a lesser extent, protein from 
acinar cells by a cholinergic mechanism. 
Perfusion of acetic and lactic acids in the 
duodenum of anesthetized rats increased fluid 
and protein output from the pancreas concomitant 
with elevation of plasma secretin levels. In 
addition, treatment of rats with atropine decreased 
plasma secretin levels and inhibited fluid (but not 
protein) secretion, indicating that only fluid 
secretion is dependent on cholinergic input (286). 
Electrical field stimulation of isolated perfused rat 
pancreas demonstrated that secretin-mediated 
exocrine secretion was sensitive to tetrodotoxin 
and atropine blockade, further suggesting 
cholinergic regulation. Nicotinic acetylcholine 
receptors are not involved in this mechanism as 
hexamethonium did not exert an inhibitory effect 
on pancreatic secretion (265).  
 
Both cAMP-dependent and independent 
pathways contribute to secretin-mediated 
exocrine secretion. Interaction of secretin with its 
receptor induced a 3-4 fold increase in adenylate 
cyclase activity which was abolished in the 
presence of secretin antagonists (212). Secretin 
did not stimulate pancreatic fluid release or 
elevate acinar cell cAMP levels in secretin 
receptor knockout mice (287). Exocrine protein 
secretion by secretin was associated with 
phospholipase C activation in one report (327). At 
secretin concentrations >10-8 M, inositol 
trisphosphate and diacylglycerol were generated 
in acinar cells, which caused release of Ca2+ from 
intracellular stores and activated protein kinase C. 
However, not all investigators have observed this 
effect.  
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Several hormones and peptides modulate the 
effects of secretin on pancreatic secretion. CCK 
augmented secretin-induced pancreatic fluid and 
protein output by stimulating acetylcholine release 
and this effect was blocked by atropine or by 
dispersion of acini (6, 313). Venous drainage from 
pancreatic islets bathes the exocrine pancreas 
with high concentrations of islet hormones. 
Several of these hormones have potent effects on 
pancreatic secretion. Insulin enhances secretin-
mediated fluid and protein secretion through an 
ouabain-sensitive Na+,K+-ATPase while glucagon 
inhibits secretin-stimulated release of fluid and 
protein (108). Addition of anti-somatostatin 
antibodies increased secretion from perfused rat 
pancreas implying that somatostatin inhibits 
secretin-induced fluid and enzyme secretion (108, 
265).  
 
Atrial Natriuretic Factor and C-Natriuretic Peptide 
Atrial natriuretic factor (ANF) is a peptide 
hormone that is secreted by atrial stretch and 
regulates blood pressure and volume by inhibiting 
reabsorption of sodium by the kidney (334). 
Immunochemical studies showed that ANF is 
present in acinar cells. Early studies suggested 
that ANF did not influence protein or fluid 
secretion. However, incubation of rat acini with 
ANF caused a dose-dependent elevation of 
cellular cGMP (112) showing that guanylate 
cyclase receptors transduce ANF signaling (199). 
Injection of human ANF in dogs induced 
bicarbonate but not sodium or protein secretion 
(249). ANF also stimulates pancreatic natriuretic 
peptide receptor-C (NPR-C)-mediated 
phosphoinositide-dependent pathway in rats, 
causing the release of fluid and protein (284). 
NPR-C is a non-guanylyl cyclase receptor and is 
coupled to adenylyl cyclase inhibition or 
phospholipase C activation through Gi proteins. 
ANF attenuated secretin- and VIP-induced 
elevation of intracellular cAMP and this effect was 
blocked by inhibitors of protein kinase C and 
phospholipaseC (283). Along with elevating 
intracellular cAMP, secretin mediates the efflux of 
cAMP from intact pancreas and acinar cells. ANF 
augmented secretin-induced cAMP efflux and 

caused the rapid elimination of cAMP from cells. 
The multidrug resistance protein 4 (MRP4) has 
been reported to play a role in the extrusion of 
cAMP in many cellular systems. MRP4 is also 
expressed in the pancreas and genetic 
knockdown of MRP4 expression reduced 
intracellular cAMP levels in acinar cells by ANF 
and an NPR-C dependent mechanism (277).  
 
C-natriuretic peptide (CNP) is structurally similar 
to ANF and is expressed in the CNS and 
gastrointestinal tract. CNP increases pancreatic 
protein, chloride, and fluid secretion (without 
influencing bicarbonate output) suggesting that it 
acts on acinar rather than duct cells. Truncal 
vagotomy or perivagal application of capsaicin or 
hexamethonium attenuated chloride secretion, 
demonstrating that the effect of CNP is modulated 
by the parasympathetic nervous system (282). At 
low concentrations, CNP induced protein 
secretion by activation of NPR-C. Similar to ANF, 
CNP-induced amylase release was inhibited by 
PLC and PKC inhibitors. CNP also elevated 
intracellular cGMP and reduced cAMP 
concentrations suggesting that CNP can interact 
directly with receptors located on pancreatic acini 
(281).  
 
Insulin 
Insulin modulates pancreatic exocrine function 
and insulin receptors are present in high density 
on the basolateral surfaces of acinar cells (21). 
Insulin increases pancreatic enzyme synthesis 
and secretion and its effects are enhanced by 
CCK and secretin (4, 154, 179, 181, 205). Since 
CCK induces insulin release in the presence of 
glucose and amino acids, it is possible that these 
two hormones act in conjunction on exocrine 
stimulation following food intake (191, 285).  
 
Limited data suggest that insulin regulates 
exocrine secretion by potentiation of ouabain-
sensitive Na+,K+-ATPase and by vagal cholinergic 
input (108, 205, 267). The action of insulin on 
exocrine secretion is modulated by PP which 
exerts an inhibitory effect on pancreatic secretion 
(263). Since galanin, pancreastatin, and 
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somatostatin are known to inhibit insulin 
secretion, it is possible that these peptides also 
regulate insulin-mediated amylase release (16, 
180, 224). 
 
Bombesin 
Bombesin is a 14 amino acid peptide homolog of 
GRP and neuromedin B and has the ability to 
suppress appetite (342). The effects of bombesin 
on pancreatic exocrine secretion appear to vary 
based on the species. In pigs, administration of 
bombesin alone or in combination with secretin 
induced protein but not fluid secretion (185). In 
guinea pigs, bombesin was very effective in 
inducing bicarbonate release from interlobular 
ducts, and this effect was blocked by a GRP 
receptor antagonist (318). Administration of 
bombesin to rats resulted in pancreatic 
hypertrophy with increased pancreatic weight, 
protein, RNA, and enzyme content and this effect 
was not regulated by CCK or secretin (184, 316).  
 
Melatonin 
Melatonin is a lipophilic hormone produced by the 
pineal gland as well as by certain neuroendocrine 
cells located in the gastrointestinal tract. 
Melatonin receptors are present on acinar cells 
and melatonin protects the pancreas against 
caerulein-induced acute pancreatitis (140). Initial 
studies showed that melatonin induced pancreatic 
amylase release which was mediated by CCK, 
vagal sensory nerves, and melatonin type 2 
receptors. However, melatonin did not appear to 
have a direct effect on pancreatic acinar cells 
(138, 139, 182, 244). The extent and importance 
of melatonin-induced pancreatic secretion is not 
well understood and merits further investigation. 
 
Amylin 
Amylin is a 37 amino acid hormone that is co-
secreted along with insulin from pancreatic β-cells 
in response to nutrients. Amylin stimulates CCK-
independent pancreatic secretion in rats, and this 
effect is blocked by proton pump inhibitors and 
atropine, perhaps due to inhibition of somatostatin 
release (80). Amylin was also shown to stimulate 
protein secretion from pancreatic AR42J cells by 

a mechanism involving activation of GPCRs and 
release of Ca2+ from intracellular stores (130). 
Others investigations have suggested that amylin 
has no effect on pancreatic exocrine secretion 
from isolated perfused pancreas, acinar 
preparations, or AR42J cells (72, 153, 351). 
Hence the effects of amylin on exocrine secretion 
remain unresolved. 
 
Histamine 
The amino acid histamine is a potential mediator 
of pancreatic exocrine secretion, although it may 
have a gender-dependent role (308). Activation of 
H1 receptors and inhibition of H2 receptors in the 
rabbit pancreas led to an increase in fluid and 
protein secretion suggesting differential action 
based on regulation and coupling of the two 
receptors (262). The effect of histamine on 
pancreatic secretion is considered to be minor at 
best under normal physiological conditions. 
 
Inhibitory Hormones 
 
Peptide YY and Pancreatic Peptide 
The NPY family of peptides consists of three 
hormones: NPY, PYY, and PP (90, 341). All three 
peptides contain 36 residues several of which are 
tyrosines and share a tertiary structural motif 
known as the PP fold. The N-terminal amino acids 
of PYY and NPY can be cleaved by peptidases to 
generate truncated forms, PYY3-36 and NPY3-36, 
which are biologically active. NPY has been 
localized to sympathetic pancreatic nerves and its 
role has been discussed previously in this review 
(38). In islets, PYY is coexpressed with glucagon 
in α cells, whereas PP is secreted postprandially 
by F cells of the islets of Langerhans. In certain 
species, PP immunopositive cells are also present 
in the exocrine pancreas and some of these PP 
cells also express PYY (67). These three 
hormones exert their effects through a family of 
five GPCRs denoted Y1-5. NPY and PYY 
possess similar affinity for Y1, Y2 and Y5, PYY3-36 

interacts preferentially with Y2, whereas PP is the 
preferred ligand for Y4 (126).  
 
PYY levels in blood are elevated postprandially 
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and following instillation of fatty acids into the 
distal small intestine (203). Physiologically 
relevant concentrations of PYY in the circulation 
inhibit both meal- and hormone-stimulated 
pancreatic secretion (260, 261, 323). Intravenous 
administration of PYY significantly diminishes 
secretin- and secretin plus CCK-mediated 
pancreatic protein and fluid secretion concomitant 
with a reduction in pancreatic blood flow (133, 
143, 261, 317). However, PYY does not inhibit 2-
diacylglycerol stimulated pancreatic secretion, 
suggesting that suppression of CCK-stimulated 
exocrine secretion occurs prior to activation by 2-
diacylglycerol or does not involve protein kinase 
C-activated signaling (62). In denervated 
pancreas, PYY1-36 but not PYY3-36, reduced CCK-
stimulated amylase release suggesting that 
hormonal effects of PYY are mediated by Y1 
receptors (57, 92). Autoradiographic analysis of 
rat pancreas with radioiodinated PYY ligand 
demonstrated that Y1 receptors are present 
primarily on smooth muscle cells of blood vessels. 
Specific staining was not observed in acinar cells 
indicating that decreased protein and fluid 
secretion could be due to reduced blood flow 
(297).  
 
PP secretion is also stimulated by ingesting a 
meal and can be reproduced by intraduodenal 
infusion of acid, aromatic amino acids, or fatty 
acids (20, 45, 151, 292, 324). Like PYY, PP 
attenuated secretin- and CCK-mediated exocrine 
secretion in dogs independent of cholinergic 
blockade (56, 57, 161). PP decreased secretin- 
and secretin plus CCK-mediated amylase release 
in dispersed acini, suggesting that PP can act 
directly on acinar cells (144). However, although 
bovine and rat PP inhibited CCK-stimulated 
protein secretion in vivo, both peptides were 
ineffective in vitro, and binding of bovine PP to rat 
acinar cells or lobules was not observed (197). In 
humans, unlike dogs, infusion of PP decreased 
pancreatic protein output, but did not influence 
bicarbonate secretion suggesting species-specific 
differences in PP action (165). However, unlike 
PYY, PP does not affect pancreatic blood flow 
and therefore inhibits exocrine secretion by a 

different mechanism (56, 57, 161). 
 
Somatostatin 
Somatostatin is composed of 14 or 28 amino 
acids and is produced by δ cells of pancreatic 
islets. It is also secreted by certain intestinal cells 
and by the hypothalamus. It is released into the 
blood after a meal but functions primarily through 
a paracrine mechanism. It has broad inhibitory 
actions on the release of several hormones and 
their target organs.  
 
Somatostatin and its analogs inhibited secretin- 
and CCK-induced protein secretion in a dose-
dependent fashion. Low doses of somatostatin 
exerted a greater inhibitory effect on CCK-
stimulated pancreatic secretion compared to 
secretin-stimulated secretion (180, 192, 300, 
301). Secretin-mediated activation of slowly-
activating voltage-dependent K+ channels 
(present on the basolateral surface of pancreatic 
acini) resulted in cAMP generation and secretion 
of chloride ions. Addition of somatostatin to acini, 
decreased intracellular cAMP production as well 
as secretin-mediated enhancement of K+ current 
suggesting that somatostatin regulates exocrine 
secretion through this pathway (177). Additionally, 
somatostatin inhibited Ca2+-dependent and cAMP-
stimulated amylase release by inhibiting 
exocytosis through a Gi protein-dependent 
mechanism (250). 
 
Somatostatin also inhibits exocrine secretion via a 
neural mechanism. Based on atropine, 
hexamethonium, and tetrodotoxin sensitivities it 
appears that peptidergic but not cholinergic and 
nicotinic acetylcholine receptors present on 
sympathetic and parasympathetic ganglia mediate 
somatostatin action (236). Somatostatin-mediated 
inhibition of secretin-stimulated fluid and protein 
secretion was not influenced by denervation, 
suggesting that extrapancreatic nerves are not 
involved. Bethanechol, a muscarinic receptor 
agonist, reversed the inhibitory effects of 
somatostatin, indicating that its actions are 
mediated primarily by intrapancreatic cholinergic 
neurons (174).  
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The mechanisms by which somatostatin inhibits 
pancreatic secretion are not completely 
understood. However, it is believed that 
somatostatin has an inhibitory effect on the 
release of hormones and neurotransmitters that 
normally stimulate pancreatic secretion. 
 
Galanin 
Galanin is a 29 amino acid peptide that plays 
diverse roles including inhibition of insulin, 
somatostatin, and PP secretion from the pancreas 
(14). It is found in the secretory granules of 
central and peripheral neurons suggesting that it 
functions as a neurotransmitter. Galanin 
immunoreactivity was present in nerve fibers 
surrounding acini, ductules, and blood vessels, 
with 73% of fibers being dual positive for galanin 
and VIP (299). Galanin receptor 3 mRNA is 
present in acinar cells indicating that galanin can 
act directly on acini (15). Consistent with this 
finding, galanin inhibited CCK- and carbachol-
stimulated amylase release from acinar cells (5). 
Galanin inhibited the sustained phase of amylase 
release stimulated by carbachol, suggesting that it 
attenuates cholinergic action possibly by a 
mechanism that involves pertussis toxin-sensitive 
Gi proteins (16, 77, 114, 147). Extrapancreatic 
nerves are not involved in its action since galanin 
inhibited food-, secretin- and CCK-mediated fluid 
release, as well as food- and CCK-mediated 
protein release in both innervated and denervated 
dogs (31).  
 
Pancreastatin 
Pancreastatin is derived from the cleavage of 
chromogranin A and is expressed in many 
neuroendocrine tissues. It has been localized to 
duct cells of the exocrine pancreas and its 
numerous roles include inhibition of pancreatic 
exocrine secretion (1). Initial studies showed that 
pancreastatin inhibited postprandial fluid and 
protein secretion in rats with bile-pancreatic juice 
diversion. No effect was observed on basal 
secretion, secretin-stimulated secretion in 
conscious rats, or CCK-stimulated secretion from 
dispersed acini. However, pancreastatin inhibited 

CCK-stimulated pancreatic secretion in conscious 
rats although it did not influence plasma CCK 
levels. These results suggest that pancreastatin 
does not have a direct effect on acinar cells, but 
may regulate the intestinal phase of pancreatic 
secretion (81, 222, 224, 335). Pancreastatin 
inhibited caerulein-induced blood flow in the 
exocrine pancreas raising the possibility that its 
inhibitory effects are derived from its role in 
regulating pancreatic blood flow (220).  
 
Glucagon 
Glucagon is released from the endocrine 
pancreas after ingestion of a meal ((29). Early 
investigations suggested that glucagon inhibited 
secretin- or secretin- and CCK-stimulated 
pancreatic protein but not bicarbonate secretion 
(47, 221). However other studies have 
demonstrated that glucagon inhibits postprandial 
protein and bicarbonate secretion (78, 106, 307). 
The effect of glucagon on isolated pancreatic 
lobules and acini appears to be direct and 
stimulatory, instead of inhibitory, suggesting 
complex action at the cellular versus physiological 
levels (2, 127, 258, 310). The experimentally 
observed effects of glucagon on exocrine 
secretion are inconclusive and merit further 
investigation. 
 
Ghrelin 
Ghrelin is a 28 amino acid orexigenic hormone 
released by gastric endocrine cells under fasting 
conditions. Ghrelin stimulates acid secretion by 
oxyntic cells in the stomach, and plasma levels of 
ghrelin rise immediately before a meal suggesting 
a role in modulating ingestive behavior. In the 
pancreas both ghrelin and its receptor have been 
identified in acini by evaluation of protein and 
mRNA expression. Ghrelin expression was not 
altered by gastric acid inhibition, acute 
pancreatitis, or food deprivation although its 
receptor was upregulated by gastric acid inhibition 
and downregulated during acute pancreatitis 
(175). Experimentally, ghrelin did not affect basal 
or CCK-stimulated amylase release from 
dispersed acini. However, ghrelin inhibited CCK-
stimulated protein secretion in normal and 
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vagotomized rats and amylase secretion from 
lobules exposed to depolarizing potassium 
concentrations, suggesting that it modulates 
intrapancreatic neurons (353).  
 
Leptin 
Leptin is a 16 kDa orexigenic peptide that is 
secreted by adipocytes and regulates energy 
homeostasis by reducing food intake while 
increasing energy expenditure. In the pancreas, 
intravenous or intraperitoneal administration of 
leptin reduced basal and CCK-stimulated protein 
output in vivo. This effect was attenuated by CCK-
1 receptor blockade, vagotomy, and capsaicin 
pretreatment suggesting that it inhibited 
pancreatic exocrine secretion through a CCK-
dependent vagal pathway. Leptin had no effect on 
dispersed acini in vitro, further supporting a neural 
mechanism of action (137, 206). In contrast, 
intraduodenal infusion of leptin in fasted rats 
augmented pancreatic protein output possibly by 
elevating plasma CCK levels leading to activation 
of sensory neurons (242).  

Adrenomedullin 
Adrenomedullin is colocalized with PP in F cells of 
pancreatic islets and inhibits insulin (196). It 
interacts directly with acinar cells and inhibits 
CCK-stimulated pancreatic amylase release 
possibly by modulating intracellular Ca2+ levels 
and exocytosis (328). The mechanism of 
adrenomedullin action is not well understood. 
 

4. Conclusion 

Pancreatic secretion is a complex process that is 
initiated by the sight and smell of food and 
progresses until food enters the duodenum. At 
each level of food digestion, this process is 
regulated by a various stimuli which affect 
neuronal and hormonal pathways. These 
pathways are both stimulatory and inhibitory and 
optimize the release of enzymes, bicarbonate, 
and fluid.
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