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1. Introduction 

While skin, liver and gut are capable to 
regenerate and heal, other organs such as heart 
and brain do not display similar regenerative 
capacities. The adult pancreas displays a limited 
capacity to regenerate, although this regenerative 
capacity declines with age (17, 74-76, 83). Thus, 
with respect to the pancreas, the uncertainty is 
not about the overall ability of the adult pancreas 
to regenerate, but rather which cells may act as 
cell(s) of origin in this process. For example, it is 
widely accepted that under physiologic conditions 
β-cell regeneration in the adult mouse pancreas 
originates from β-cell self-duplication (21, 77). 
However, depending on the type of injury model, it 
appears that new β-cells can arise from cells 
either residing within the ducts (1, 4, 18, 35, 91), 
in proximity to the ductal network (88), or from 
other pancreatic endocrine cells (15, 16, 78, 90). 
This uncertainty regarding the types of cells that 
may potentially give rise to new β-cells comes in 
part from the fact that in each experimental model 

of regeneration, the exact target cells and the 
severity of the injury are different. Here, we will 
first review some of the injury models that have 
been used to study the mechanisms leading to 
replacement of acinar and β-cells, followed by a 
discussion of the discrepancies in these reports.  
 
2. Injury models used to study 
pancreatic regeneration 

Throughout the years multiple models of 
pancreatic injury have been used by different 
investigators to explore the regenerative capacity 
of exocrine or endocrine compartments of the 
adult pancreas (46). Among these models, some 
of the commonly used are pancreatic duct ligation, 
partial pancreatectomy, caerulein-induced 
pancreatitis, alloxan- or streptozotocin-induced 
diabetes, and diphtheria toxin-mediated cell 
ablation. These models are of varying specificity, 
and they entail surgical, chemical or genetic 
methods. 
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Pancreatectomy (Px)  
Pancreatectomey is the oldest model with which 
to examine the regenerative capacity of the 
pancreas (85). The first documented removal of 
the pancreas was performed on dogs by Johann 
C. Brunner in 1683 (30). However, it was first in 
1890s that pancreatectomy was reported to result 
in diabetes, and hence a link between the 
pancreas and glucose homeostasis was 
established (30, 85). Px can be used to study 
acinar and β-cell recovery in both rats and mice; 
however, because of the increased islet mass this 
injury model has been extensively used to study 
β-cell regeneration (5, 10, 19, 32, 47, 75, 82-84). 
Partial pancreatectomy (PPx) involves resection 
of less than 90% (often 50%-75%) of the adult 
mouse or rat pancreas (19-21, 42, 43, 61, 62, 83, 
86). Here, the remnant of the pancreas displays 
normal gross morphology. A more severe form of 
Px that has been performed on rats is subtotal 
pancreatectomy (SPx), and entails removal of 
90%-95% of the gland through tissue abrasion (3, 
7, 47, 61, 69). Thus, in contrast to PPx, here the 
acinar cells in the remnant of the pancreas 
undergo rapid atrophy, which results in a 
desmoplastic reaction (47, 51). Regardless of the 
extent of resection, pancreatectomy is associated 
with an IGF/PI3K-dependent up-regulation of 
Pdx1 expression in duct cells (69, 82, 83). 
Interestingly, the limited organ recovery that 
follows Px appears to be proportional to the size 
of the excision (3, 7, 44, 61, 63).  Subtotal 
pancreatectomy in rats leads to ductal cell 
proliferation and induction of an extensive 
regenerative process that promotes mature duct 
cells to regress and re-express embryonic genes 
such as Pdx1, Ptf1a, and Ngn3 before 
differentiating to the different pancreatic cell types 
(47, 69). While these data imply that the duct cells 
might contribute to the observed increased islet 
mass following Px, other studies would argue 
against the involvement of duct cells in this 
process (20, 21, 43, 86). Using lineage tracing 
studies, independent investigators have not been 
able to find any evidence for β-cell neogenesis 
following 50%-75% PPx (21, 86). Accordingly, 

50% PPx in Ngn3-GFP transgenic mice failed to 
induce Ngn3-expression in cells within islets or 
ducts (43). All together, although the potential 
contribution of other cell types can not be rolled 
out, the current literature supports the notion that 
the main source for acinar or β-cell regeneration 
that follows Px is pre-existing acinar or β-cells, 
respectively (20, 21, 55, 86). 
 
Pancreatic duct ligation (PDL) 
As in the case of Px, ductal obstruction and 
ligation have historically been used in 
investigating pancreatic regeneration (85). PDL 
involves ligation of one of the main ducts, which 
leads to acinar cell death and inflammation in the 
area distal to the ligation. An advantage with PDL 
is that the unligated portion of the pancreas 
remains unaffected, and thus can be used as an 
internal control. However, the regenerative 
process in this model, particularly the acinar 
regeneration, appears to be species-dependent. 
PDL in rats is associated with near complete 
acinar recovery through a process that involves 
appearance of ductular structures, and their 
differentiation into acinar cells (7, 13). In mice, 
although PDL results in the formation of similar 
metaplastic ducts, the acinar compartment does 
not regenerate (13, 20, 38, 71). Lineage tracing 
studies in mice show that both surviving acinar 
cells (20) and Hnf1β-expressing duct cells (71) in 
the ligated part of the pancreas can contribute to 
the formation of these ductular structures. In other 
words, the tubular structures observed in the 
ligated part consist of acinar-derived metaplastic 
ducts and pre-existing ducts that have changed 
morphology. Similarly, in rats it is believed that 
pre-existing acinar cells transdifferentiate into 
these ductal structures (7, 13), whereas the 
contribution of duct cells in this process has yet to 
be determined. 
 
Pancreatic duct ligation has been primarily used 
to provide insights on islet β-cell generation, as it 
is reported to stimulate β-cell regeneration in both 
mouse and rat (7, 13, 80, 81, 86-88, 91). 
Nevertheless, there is a controversy with respect 
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to the mechanism allowing the observed β-cell 
generation. While some studies favor β-cell 
proliferation as the main mechanism for β-cell 
formation after PDL (13, 38, 65, 71, 86), others 
support the potential contribution of non β-cells (in 
particular cells within or in proximity of ductal 
network) to β-cell neogenesis in a PDL setting (35, 
60, 88, 91).    
 
Caerulein-induced pancreatitis 
Caerulein is a cholecystokinin orthologue, which 
when administered repeatedly at high 
concentrations leads to a dropout of over half of 
acinar compartment which can cause acute or 
chronic pancreatitis (25, 40, 46). In mice, the 
pancreas regains its normal histology within a 
week after caerulein treatment. The rapid 
regenerative process associated with this injury 
model has been used by many investigators to 
follow the course of acinar recovery (28, 33, 36, 
53, 72). Lineage-tracing studies have shown that 
following caerulein-induced pancreatitis the 
surviving acinar cells contribute to the recovery of 
the acinar compartment (20, 28, 53, 72). Acinar 
regeneration in this model is through acinar-to-
ductal metaplasia (ADM), a process that requires 
a transient reactivation of various developmental 
genes and signaling pathways, including notch, 
hedgehog and wnt (28, 36, 39, 53, 54, 64). ADM 
involves dedifferentiation of acinar cells into duct-
like cells, proliferation of metaplastic ducts, and 
finally re-differentiation of duct-like cells into 
acinar cells (53). A first step toward 
transdifferentiation of one cell type to another cell 
type is that cells have to lose their original identity 
in order to acquire a new one. Accordingly, the 
dedifferentiation of acinar cells is associated with 
expression of ductal markers such as Hnf6, Sox9, 
and cytokeratin-19 and concomitant repression of 
acinar markers Ptf1a, Mist1, amylase and Cpa 
(64). Wnt/β-catenin signaling is one of the 
embryonic pathways, which is reactivated in 
ADMs following caerulein-induced pancreatitis (53, 
54). However, for the ADMs to re-differentiate into 
acinar cells wnt-signaling has to be eventually 
downregulated, as persistent wnt/β-catenin 

activity leads to impaired acinar recovery (24, 53). 
The precise mechanism for the dynamic activity of 
wnt/β-catenin in ADMs is not clear, but a recent 
report implicates HDACs as an important 
epigenetic switch required for controlling nuclear 
β-catenin transcriptional activity (24). The 
transcriptional factor PDX1 has primarily been 
associated with the embryonic pancreas and 
mature β-cells in the adult pancreas. However, a 
new study highlights the importance of PDX1 in 
maintaining acinar cell identity (66). PDX1 
displays similar dynamic expression as wnt/β-
catenin during ADM, and accordingly its down-
regulation is necessary for re-differentiation of 
ADM into acinar cells (66). 
 
Other models of pancreatitis 
In addition to the aforementioned caerulein-
induced pancreatitis, other rodent models 
commonly used to study acute pancreatitis entail 
ductular bile salt infusion, duct obstruction, the 
choline-deficient ethionine supplemented diet 
(CDE), or administration of basic amino acids 
such as L-arginine. These injury models have 
been extensively described and reviewed by 
Lerch and Gorelick elsewhere (46). 
 
Alloxan or streptozotocin-induced 
diabetes 
Alloxan and streptozotocin (STZ) are used to 
induce diabetes by chemical ablation of 
pancreatic β-cells. Alloxan was first described in 
early 1800, but its diabetogenic property was 
reported in 1943, and since then alloxan 
treatment has been used as an experimental 
model for diabetes (73). STZ was initially used as 
a chemotherapeutic agent in pancreatic islet cell 
tumors and other malignancies (45), but since its 
discovery as a diabetogenic agent in 1963, it has 
been widely used in diabetes research (26). 
Alloxan and STZ are both toxic glucose 
analogues that preferentially accumulate in insulin 
producing β-cells via the Glut2 glucose 
transporter (45). Diabetes as the result of alloxan 
or STZ-treatment is not associated with β-cell 
regeneration (73, 86). Because of the absence of 
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spontaneous β-cell recovery, these models have 
been useful tools to study a given treatment on β-
cell regeneration. In addition, alloxan- or STZ-
treatment can be combined with pancreatic duct 
ligation to study the effect of hyperglycemia on the 
regenerative process in the ligated portion of the 
pancreas (13, 16, 60). Here, while the 
combination of alloxan- or STZ-treatment and 
PDL in mice led to transformation of glucagon-
producing α-cells or acinar cells into β-cells (16, 
60), no such α-to β-cell conversion could be found 
when rats were subjected to a combined PDL and 
STZ-treatment (13). 
 
Diphtheria toxin-mediated cell ablation 
A relatively new method which enables cell-
specific ablation is transgenic activation of the 
diphtheria toxin cell death pathway using a cell-
specific promoter (8, 59).  Mature diphtheria toxin 
(DT) is composed of subunits A and B (DTA and 
DTB) (31, 79). DT binds a toxin receptor on the 
cell surface of toxin-sensitive cells and is 
endocytosed (23, 29, 67). Upon entry into the 
cytoplasm, the DTA subunit is released and it 
catalyzes the inactivation of elongation factor 2, 
resulting in termination of all protein synthesis, 
with rapid apoptotic death of the target cell (11, 
34). The toxicity of DTA is sufficiently high that 
only one molecule of DTA in the cytosol may be 
enough to kill the cell (89). The DT receptor (DTR) 
is a membrane-anchored form of the heparin 
binding EGF-like growth factor (HB-EGF 
precursor) (56). The human and simian HB-EGF 
precursors bind DT and function as toxin 
receptors, whereas HB-EGF from mice and rats 
do not bind the toxin and therefore remain 
insensitive to DT (52). Thus, transgenic 
expression of the simian or human DTR in mice 
can render naturally DT-resistant mouse cells DT-
sensitive (14, 37, 67). Recently, a mouse strain 
was generated (R26DTR), in which a loxP-flanked 
STOP cassette and the open reading frame of 
simian DTR had been introduced into the 
ROSA26 locus (11). In the R26DTR strain, the 
gene encoding DTR is under the control of the 
potent Rosa promoter, but DTR expression is 

dependent first on Cre-recombinase removal of 
the STOP cassette (11). Following Cre-
recombinase activity, the DTR-expressing cells, 
i.e. cells expressing Cre, and all of their progeny, 
are viable and function normally. However, these 
cells are rapidly killed upon DT administration. 
Noteworthy, the HB-EGF is no longer active as an 
EGFR ligand, as transgenic lines expressing DTR 
in different pancreatic lineages do not display any 
abnormal phenotype (17, 18). In the adult 
pancreas, DTR/DTA-mediated β-cell ablation has 
been used to study regeneration following α- or β-
cell specific losses (15, 17, 57, 70, 78), acinar (17, 
18), or acinar and endocrine cell ablation (17, 18). 
 
3. Inconsistencies in understanding 
pancreatic regeneration 

A brief look at table 1 highlights the 
inconsistencies that currently exist in the literature 
regarding the regenerative capacity of the adult 
mouse pancreas. For example, there is a 
complete recovery of the acinar compartment 
within a week after caerulein-induced pancreatitis, 
whereas there is principally no acinar 
regeneration following PDL. Additionally, α-cells 
can differentiate into β-cells, however this 
plasticity has been observed only upon total β-cell 
ablation but not following partial loss of β-cell 
mass.  Variations between different studies are 
likely due to the disparities in the nature, extent, 
and perhaps more importantly the severity of 
injury used. In this review, we will argue that the 
combined effects of these parameters not only 
may determine whether or not regeneration would 
occur, but also dictate which cell type(s) should 
contribute to this process. 
 
The nature of injury 
Here, the question is not so much about whether 
the injury is chemically, mechanically or 
genetically induced, but rather what kind of cell 
death does it trigger? Apoptosis is programmed 
cell death generally associated with retention of 
plasma membrane integrity, condensation and 
cleavage of nuclear and cytoplasmic proteins and 
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Table 1. 
Injury Nature  Extent Severity Regeneration References 

Px Surgical 
resection 

Exocrine and 
Endocrine 

50-90% 
resection 

Limited organ 
recovery 

1, 2, 6, 21-40 

PDL Apoptosis Acinar cells Area distal to the 
ligation  β-cells 12, 13, 32, 34, 

41-48 
Alloxan Necrosis β-cells Vast majority No 15, 33, 61, 62 

STZ Necrosis β-cells Dose dependent No 33, 41, 61, 62 
Caerulein Necrosis Acinar cells < 50% Yes 18, 32, 49-60 

DT/DTR Apoptosis Exocrine and/or 
endocrine 

Promoter-
dependent Yes/No 5, 10, 14, 17, 

78, 79 
 
cell shrinkage or the formation of apoptotic bodies 
(27). Apoptosis is a highly coordinated process 
which requires significant amount of energy, and 
therefore relies on mitochondrial respiration and 
ATP production (22). Necrosis, on the other hand 
is invoked in response to external stimuli and 
ATP-deficiency (22). Pancreatic injury and 
ensuing regeneration invariably depend on proper 
clearance of the dead cells (17). Because of its 
nature (loss of cytoplasmic membrane integrity, 
cellular fragmentation and release of lysosomal 
and granular contents into surrounding 
extracellular space), necrosis does not allow for 
proper removal of cell organelles, and as the 
result it is followed by reactive inflammation (2, 12, 
22, 50, 58, 68). In contrast, apoptosis involves 
debriding the tissue without generating massive 
inflammation that is usually induced by the 
degeneration of dead cells (22). The effect of 
apoptosis or necrosis on regeneration is perhaps 
best manifested when one compares β-cell 
regeneration following STZ (or alloxan) treatment 
with DT-mediated β-cell ablation. In these two 
models, the target cells (β-cells) as well as the 
degree of β-cell loss (75-80% sub-optimal 
condition for STZ, or 75% β-cell ablation using 
PdxCreERT) are similar (17, 21). Interestingly, 
STZ-induced necrosis is accompanied with a 
massive inflammatory response and the absence 
of β-cell regeneration, whereas DT-induced 
apoptosis leads to almost complete β-cell mass 
recovery (57). 
 

Overall, compared to the necrosis, apoptosis 
provides an environment that would favor β-cell 
regeneration. Acinar regeneration appears to be 
less sensitive to the nature of injury, as robust 
acinar tissue recovery have been reported in both 
necrotic (caerulein) as well as apoptotic (DT-
mediated) environments (17, 18, 28, 33, 36, 53, 
54, 72).  
 
The extent of injury  
Another factor that may influence the regenerative 
process is the extent of injury. In other words, how 
many different cell types are affected by the 
insult? In addition to the ductal, acinar and five 
different hormone-producing endocrine cell types, 
the adult pancreas is home to numerous 
endothelial, stellate and neuronal cells. The type 
of injured cells is important as recent reports have 
shed light on the role of macrophages in inducing 
acinar-to-ductal metaplasia, as well as promoting 
β-cell, or acinar cell regeneration (9, 17, 49, 87). 
Macrophages appear to have differential functions 
in diverse phases of regeneration, first to debride 
the tissue following injury, and secondly to convert 
injury signals into lineage-specific regenerative 
signals (6, 17, 48). One exception to this rule is 
PDL, which as mentioned earlier is associated 
with acinar atrophy. Thus, one would expect that 
this model would lead to acinar regeneration, but 
instead it stimulates β-cell regeneration. Clearly, 
the effect of PDL on non-acinar cells residing in 
the ligated part cannot be ruled out. Therefore, it 
is possible that the combined regenerative signals 
released by macrophages (as the result of 
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engulfing damaged acinar- and non-acinar cells) 
would serendipitously create an environment that 
would promote β-cell regeneration instead of 
acinar. In fact, combined PDL and β-cell ablation 
by STZ has been reported to enhance acinar to β-
cell transdifferentiation (60). 
 
Based on our current understanding of the 
involvement of macrophages in regeneration, 
simultaneous ablation of many cell types would 
make direct interpretation of cellular mechanism 
of regeneration difficult. Thus, cell-type specific 
ablation may be a better method for analyzing the 
in vivo function of cells during regeneration, which 
can be achieved by using streptozotocin, alloxan 
(for β-cells) or caerulein (for acinar cells). 
Alternatively, transgenic activation of the 
diphtheria toxin (DTR/DTA) cell death pathway, 
which depending on the promoter, can target one 
specific (for example Elastase promoter for acinar 
cell ablation) or more than one cell type (Pdx1 
promoter to target all pancreatic epithelial cells) 
(17, 18).  
 
The severity of injury 
Mounting evidence suggests that the severity of 
injury is perhaps one of the most important 
elements that dictate whether the mechanism for 
repair should include replication of pre-existing 
cells, or neogenesis from other cell types. DT-
mediated cell ablation has been used by number 
of investigators to vary the extent and the severity 
of injury, while keeping other variables (such as 
the nature of the injury) relatively constant. 
Collectively, it appears that regardless of cell type, 
as long as ablation of a specific cell type does not 
reach near 100%, the mechanism for 
regeneration mainly involves the pre-existing cells 
(17, 21, 28, 53, 72, 78). Therefore, following 75% 
ablation of β-cells, surviving β-cells proliferate to 
generate new β-cells, whereas complete loss of 
insulin-producing cells promotes conversion of 

other endocrine cell types into β-cells (15, 17, 21, 
78). Consistently, acinar cell recovery following 
caerulein-induced pancreatitis is through pre-
existing acinar cells. However, near complete loss 
of both acinar as well as endocrine cells 
stimulates cells within the ductal compartment to 
form new acinar and endocrine cells (17, 18). One 
could also argue that the extent of the surgical 
intervention may be important also in the 
pancreatectomy setting, and could explain 
discrepancies in some reports describing absence 
or vigorous pancreatic regeneration after partial or 
subtotal pancreatectomy, respectively (3, 21, 47). 
However, as mentioned earlier unlike PPx, 
subtotal pancreatectomy is associated with acinar 
atrophy and a desmoplastic reaction. Of note, this 
inflammatory reaction has been reported to be 
important for the robust regeneration that follows 
SPx, as inhibition of the inflammation prevented 
regeneration (7, 41). Therefore, it is likely that the 
inconsistencies between PPx and SPx are due to 
the presence or the absence of inflammation 
rather than the extent of injury. 
 
4. Conclusions 

Pancreatic regeneration relies on a complex 
interaction between cells that provide necessary 
regenerative signals and cells that are receptive 
to those signals. As discussed here, the nature, 
extent and the severity of injury are three 
important parameters that determine whether 
tissue recovery is achieved. β-cell regeneration 
seems to be more sensitive to the nature of injury 
than acinar regeneration. Finally, the extent of 
injury determines which cell types would respond 
to these regenerative signals.  
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