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1. Introduction 

The pancreas plays a critical role in the control of 

nutritional homeostasis. It consists of two major 

parts, the exocrine pancreas, which releases 

digestive enzymes; and the endocrine pancreas, 

which releases hormones such as insulin, 

glucagon, pancreatic polypeptide and 

somatostatin and maintains glucose homeostasis. 

Cells in the endocrine pancreas are organized in 

pancreatic clusters of cells, the islets of 

Langerhans. Within the islets, the β-cells, which 

secrete insulin, are the predominant cell type and 

comprise approximately 70% of the cells within 

the islets. The remaining cells consist of α-cells 

that secrete glucagon, δ-cells that secrete 

somatostatin, and cells that secrete pancreatic 

polypeptide. The main function of the exocrine 

pancreas is to aid in digestion by secreting 

digestive enzymes and bicarbonate into the 

duodenum. The exocrine pancreas consists of 

only two major cell types, namely acinar cells that 

synthesize, store and secrete digestive enzymes; 

and ductal cells that secrete chloride and 

bicarbonate.  

 

Both parts of the pancreas are innervated by the 

sympathetic and parasympathetic nervous 

system, with separate pathways regulating the 

exocrine and the exocrine pancreas.  In this 

chapter, we provide an overview of the central 

neural pathways that control the pancreas and the 

main neurotransmitters expressed in these 

pathways. 

 

2. Sensory innervation of the pancreas 

Sensory information from the pancreas is 

transmitted to the central nervous system (CNS) 

via both vagal and spinal pathways. Cell bodies of 

the spinal afferent pancreatic neurons are located 

in the T6-L2 dorsal root ganglia (DRG) and their 

axons traverse the splanchnic nerves and celiac 

plexus, before they enter the pancreas. These 

fibers comprise small myelinated (Aδ) and 

unmyelinated (C) fibers that transmit both 

mechanoreceptive and nociceptive information to 

the preganglionic sympathetic neurons in the 

intermediolateral cell column (IML) via 

interneurons in the spinal cord laminae I and IV 

(51). Most DRG neurons are capsaicin-sensitive 

and contain substance P (SP), calcitonin gene-

related peptide (CGRP) or both (27, 63, 67, 68, 

70, 83).  Mechanosensitive fibers are primarily 

associated with blood vessels and although their 



 2 

axons are located within the pancreatic 

parenchyma, they do not appear to innervate the 

ductal system (65). SP and CGRP may be 

involved in pain associated with chronic 

pancreatitis, as intrathecal administration of their 

antagonists attenuated behavioral pain responses 

in a rat model of chronic pancreatitis (48). 

 

Pancreatic vagal afferent neurons originate in the 

nodose ganglia and are relatively sparse 

compared to spinal afferents. Most of these 

neurons are capsaicin-sensitive and contain 

substance P and calcitonin gene-related peptide 

or both (27, 67, 68). Anterograde tracing studies 

have shown that axons originating in the nodose 

ganglion supply large blood vessels, pancreatic 

ducts, acini and islets, and are only sparsely 

distributed in the pancreatic ganglia (51). 

Interestingly, injections of an anterograde tracer 

into the right nodose ganglion resulted in labelling 

primarily in the duodenal pancreatic lobe, 

whereas injections into the left ganglion 

predominantly labelled the splenic lobe, indicating 

that sensory innervation of the pancreas is 

distributed in a regionally specific manner (57). 

 

The role of sensory nerves on pancreatic 

functions in control conditions is not completely 

understood, however. Chemical ablation of 

pancreatic sensory nerves has been shown to 

increase (37) or have no effect (38) on glucose-

stimulated insulin secretion, suggesting that 

sensory nerves may exert tonic inhibition of 

insulin secretion. Similarly, substance P has been 

shown to either stimulate (29, 66) or inhibit (14) 

insulin secretion. Effects on glucagon secretion 

are equally contradictory. Calcitonin gene-related 

peptide has been reported to either stimulate or 

inhibit glucagon release (1, 35). Furthermore, 

ablation of the sensory nerves with capsaicin has 

been reported to either reduce (38) or have no 

effect (35) on stimulated glucagon secretion.  

Although the role of sensory afferents in the 

regulation of exocrine secretion has not been fully 

established, it has been shown that calcitonin 

gene-related peptide and substance P inhibit 

pancreatic exocrine secretion indirectly via actions 

on ganglionic transmission (40).  

3. Sympathetic nervous system control 
of the pancreas 

Anatomy of the sympathetic 
pathways regulating pancreatic 
functions  
Sympathetic innervation of the pancreas 

originates from the sympathetic preganglionic 

neurons in the lower thoracic and upper lumbar 

segments of the spinal cord. Axons from these 

neurons exit the spinal cord through the ventral 

roots and supply either the paravertebral ganglia 

of the sympathetic chain via communicating rami 

of the thoracic and lumbar nerves, or the celiac 

and mesenteric ganglia via the splanchnic nerves. 

The catecholaminergic neurons of these ganglia 

innervate the intrapancreatic ganglia, islets and 

blood vessels and, to a lesser extent, the ducts 

and acini. These differences in the innervation of 

various portions of the pancreas are evident 

following sympathetic nerve activation, as 

sympatho-activation decreases insulin secretion 

and results in vasoconstriction, while it has little or 

no effect on ductal and acinar cell secretions. The 

principal neurotransmitters released by the 

postganglionic sympathetic neurons that innervate 

the pancreas are noradrenaline, galanin and 

neuropeptide Y (NPY).  

 

Retrograde tracing studies using trans-synaptic 

tracers such as the Bartha strain of pseudorabies 

virus have revealed the distribution of neurons 

that supply the sympathetic innervation to the 

pancreas. Unlike traditional retrograde tracers, 

trans-synaptic tracers can cross synapses and 

therefore enable identification of higher order 

neurons in the neurocircuits that innervate the 

locus of injection (19). Injections of the virus into 

the pancreas of vagotomized rats has 

demonstrated that second order neurons in the 

sympathetic circuits to the pancreas are located in 

the brainstem, specifically in the A5 cell group, 

locus coeruleus, ventrolateral medulla and the 

caudal raphe, as well as in the paraventricular, 

lateral and retrochiasmatic nuclei of the 



 3 

hypothalamus and the prefrontal cortex. Third-

order neurons are located in the bed nucleus of 

the stria terminalis, medial preoptic area, and 

subfornical organ, in the dorsomedial, 

ventromedial and arcuate nuclei of the 

hypothalamus and the central nucleus of the 

amygdala (18). A schematic representation of the 

sympathetic innervation of the pancreas is shown 

in Figure 1.  

 

Effects of Sympathetic Nervous 
System Activation on Pancreatic 
Functions 
The role of the sympathetic nervous system in the 

regulation of pancreatic functions still remains 

somewhat controversial. Stimulation of the 

sympathetic nerves elicits diverse effects, 

including effects on blood pressure, blood flow 

and hormone release and therefore direct effects 

of sympathetic nervous system stimulation are 

difficult to discern from effects secondary to 

changes in blood flow or hormone release. 

Nonetheless, the sympathetic nervous system 

has been shown to affect the function of the 

endocrine, and to a lesser extent, exocrine 

pancreas.  

 

Stimulation of the splanchnic nerve, which 

supplies the sympathetic innervation to the 

pancreas, has been shown to decrease plasma 

insulin levels, possibly via direct actions of 

noradrenaline on pancreatic -cells (2, 3, 6, 26, 

33). Splanchnic nerve stimulation also increases 

catecholamine levels, which have been shown to 

decrease insulin secretion via α2 adrenoreceptors 

on pancreatic  cells (26, 31).  Furthermore, both 

splanchnic nerve stimulation and adrenaline 

administration/release increase glucagon 

secretion (3, 4, 33). In contrast, disruption of the 

splanchnic nerve increases insulin levels, 

suggesting that the sympathetic nervous system 

exerts a tonic inhibition of the endocrine 

pancreas. Taken together, these findings indicate 

that the overall effect of sympathetic nervous 

system stimulation is to maintain glycemic levels 

during stressful conditions by decreasing insulin 

and increasing glucagon secretion.  

 

The effects of sympathetic nerve stimulation on 

pancreatic exocrine secretions are not as clear. 

Although the sparse innervation of acinar and 

ductal by the sympathetic nervous system would 

suggest that the sympathetic nervous system 

does not play a major role in the regulation of the 

exocrine pancreas, some studies have reported 

that the sympathetic nervous system may exert 

profound effects on exocrine secretions (51). 

Electrical stimulation of the splanchnic nerves 

inhibits, whereas cutting the splanchnic nerves in 

pigs increases PES, suggesting a tonic inhibition 

of pancreatic exocrine secretion by the 

sympathetic nervous system (32). However, 

studies using more selective stimulation of the 

sympathetic nervous system have reported 

conflicting results. Noradrenaline, as well as 

selective α- and β-adrenoreceptor agonists or 

antagonists have been shown to decrease, 

increase or have no effect on pancreatic exocrine 

secretion (51). These conflicting findings may be 

due to the fact that these agents influence blood 

flow, which exerts secondary effects on PES. For 

Figure 1: Sympathetic innervation of the pancreas. 
Abbreviations: Arcuate Nucleus (ARC), Dorsal root 
ganglion (DRG), Dorsomedial nucleus of the 
hypothalamus (DMH), Lateral hypothalamic area 
(LHA), Medial preoptic area (MPO), Nucleus of the 
tractus solitaries (NTS), Organum vasculosum of the 
lamina terminalis (OVLT), Prefrontal cortex (PFC), 
Retrociasmatic area (RCA), Suprachiasmatic nucleus 
(SCN), Subfornical organ (SFO), Ventromedial 
hypothalamus (VMH) 
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example, vasoconstriction induced by activation of 

-adrenoreceptors would result in reduced blood 

flow to the exocrine pancreas, thus causing a 

decrease in the amount of fluid secreted by the 

exocrine pancreas. In support of this suggestion, 

noradrenergic vasoconstriction has been shown 

to decrease pancreatic exocrine secretion (11). In 

addition, denervation of the celiac ganglion in the 

dog reduced pancreatic secretions by 

approximately 70%, but increased blood flow by 

approximately 350%, suggesting that the 

sympathetic nervous system exerts a tonic effect 

on both pancreatic exocrine secretion and 

vasoconstriction (41). Considering these 

constraints of studying pancreatic exocrine 

secretion independently of vasoconstriction, it is 

not clear how much influence the sympathetic 

nervous system has in the regulation of PES.  

 

4. Parasympathetic innervation of the 
pancreas 

Anatomy of parasympathetic 
pathways innervating the pancreas 
 

The parasympathetic nervous system provides 

the major excitatory input to the pancreas. 

Preganglionic parasympathetic neurons that 

innervate the pancreas originate in the dorsal 

motor nucleus of the vagus (DMV) and activate 

parasympathetic post-ganglionic neurons in the 

pancreatic ganglia, primarily via activation of 

nicotinic acetylcholine receptors. Vagal motor 

output from DMV neurons is conveyed to the GI 

tract via two pathways, which can be 

distinguished based on their post-ganglionic 

neurotransmitters. The excitatory cholinergic 

pathway releases acetylcholine, which acts on 

muscarinic M3 and M1 receptors and provides a 

tonic input to the gastrointestinal viscera. The 

inhibitory non-adrenergic, non-cholinergic 

pathway uses nitric oxide, vasointestinal peptide, 

gastrin-releasing peptide or pituitary adenylate 

cyclase-activating polypeptide (51, 73). Nicotinic 

transmission between pre- and post-ganglionic 

neurons can be modulated by various 

neurotransmitters and neuromodulators (17, 51). 

It should also be kept in mind that species 

differences in the parasympathetic innervation of 

the pancreas have been reported. In the mouse, 

parasympathetic axons provide input to both 

alpha and beta cells, while parasympathetic 

axons are rare in the human islets (64).  

 

The DMV, which contains preganglionic 

parasympathetic neurons that supply various 

regions of the GI tract, shows viscerotopic 

organization, with neurons that project to different 

parts of the GI tract distributed in anatomically 

distinct mediolateral columns. Neurons in the 

medial part of the DMV project to the proximal GI 

tract, whereas neurons in the lateral DMV project 

to the more distal parts of the GI tract (73). Vagal 

preganglionic DMV neurons that innervate the 

pancreas are usually located in the left DMV in 

the area which comprises the hepatic and anterior 

gastric branches of the vagus, although a few 

scattered neurons innervating the splenic end of 

the pancreas are located in the areas 

corresponding to the celiac branches. Pancreas-

projecting DMV neurons can be distinguished 

from gastric- and intestinal-projecting DMV 

neurons based on their morphological and 

electrophysiological properties, further reinforcing 

the observation that DMV neurons display a 

highly specialized organization with respect to 

regulation of various GI functions (16).  Some 

pancreas-projecting DMV neurons display a 

slowly-developing apamin-insensitive 

afterhyperpolarization, which is not present in 

other DMV neurons (15). Compared to gastric-

projecting neurons, pancreas-projecting neurons 

have a longer action potential duration and longer 

afterhyperpolarizaton decay time. Pancreas-

projecting neurons also have higher input 

resistance, smaller afterhyperpolarization 

amplitude and a higher firing rate in response to 

current injections compared to intestinal-

projecting neurons. Furthermore, pancreas-

projecting neurons have a smaller soma area and 

a larger diameter than gastric-projecting neurons 

and fewer segments than gastric- or intestine-

projecting DMV neurons (15).  
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The major input to DMV neurons originates in the 

adjacent nucleus tractus solitarius (NTS) (Figure 

2). Although NTS neurons express a wide variety 

of neurotransmitters and neuromodulators, NTS 

projects to the DMV primarily via glutamatergic, 

GABAergic and catecholaminergic inputs (73). 

Despite this relatively simple neurochemistry, 

NTS-DMV synapses display a great deal of 

plasticity and can be modulated by numerous 

neurotransmitters, neuromodulators, hormones 

and physiological conditions (10).  

 

Studies using injections of transsynaptic 

retrograde tracers into the pancreas of 

sympathectomised rats have demonstrated the 

distribution of higher order neurons that innervate 

the pancreas (18, 49, 69). These studies have 

revealed that neurons that comprise the 

parasympathetic circuitry to the pancreas show a 

wider distribution compared to the neurons 

involved in the sympathetic innervation to the 

pancreas, with some regions overlapping those 

that comprise sympathetic inputs to the pancreas 

(51). In addition to the NTS, second order 

neurons that innervate the pancreas are located 

in the area postrema, accessory nucleus of the 

spinal trigeminal nerve, raphe pallidus, raphe 

obscurus, substantia reticulata, ventrolateral 

medulla and the A5 area (Figure 2). 

Parasympathetic second order neurons are also 

located in the hypothalamic areas, namely the 

paraventricular, lateral, dorsomedial and arcuate 

nuclei; medial preoptic area, retrochiasmatic area, 

subfornical organ, bed nucleus of stria terminalis. 

Furthermore, higher order neurons have been 

detected in the prefrontal, piriform and gustatory 

cortices, and these neurons provide anatomical 

basis for the cephalic phase of exocrine secretion 

(18, 50).  

Effects of parasympathetic 
stimulation on pancreatic functions 
 

Parasympathetic innervation plays a major role in 

the regulation of pancreatic functions. Activation 

of the vagus nerve directly affects pancreatic 

exocrine and endocrine secretion (12, 42, 43, 60, 

62). Electrical stimulation of the DMV or the NTS 

increases insulin secretion (34), as do 

microinjections of the GABAA receptor antagonist 

bicuculline (8, 56). In addition, the vagus nerve 

modulates the intrinsic pacemaker activity of the 

pancreas, which is responsible for pulsatile insulin 

secretion, indeed patients with complete resection 

of the subdiaphragmatic vagus display a longer 

periodicity of plasma insulin oscillations (74).   

 

The vagus nerve also plays a crucial role in the 

regulation of PES. Effects of peptides that 

modulate pancreatic secretions, such as 

cholecystokinin (CCK), somatostatin, calcitonin 

gene-related peptide (CGRP), and pancreatic 

polypeptide (PP), are vagally mediated (20). 

Furthermore, vagotomy has been shown to 

almost completely abolish pancreatic exocrine 

secretion induced by feeding or by 

pharmacological or electrical stimulation (22, 45, 

46), whereas disinhibition of the DMV by 

Figure 2: Parasympathetic pathways innervating the 
pancreas. 
Abbreviations: Area postrema (AP), Arcuate Nucleus 
(ARC),Bed nucleus of the stria terminalis (BNST), 
Dorsomedial nucleus of the hypothalamus (DMH), 
Dorsal motor nucleus of the vagus (DMV), Lateral 
hypothalamic area (LHA), Medial preoptic area 
(MPO), Nucleus of the tractus solitarius (NTS), 
Organum vasculosum of the lamina terminalis 
(OVLT), Prefrontal cortex (PFC), Paraventricular 
nucleus (PVN), Retrochiasmatic area (RCA), 
Suprachiasmatic nucleus (SCN), Subfornical organ 
(SFO), Ventromedial hypothalamus (VMH),  
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microinjections of the GABAA receptor antagonist 

bicuculline increase pancreatic exocrine secretion 

(9).   

 

The cephalic phase response, which refers to the 

release of gut hormones and digestive enzymes 

before the ingested nutrients have induced a 

systemic hormonal response, is also dependent 

on the vagus nerve and its inputs from the 

gustatory, piriform, and prefrontal cortices (17).  In 

fact, vagally-mediated exocrine secretion in the 

cephalic phase accounts for a significant portion 

of total postprandial enzyme secretion (5), 

suggesting that inputs from higher CNS centers to 

pancreas-projecting DMV neurons play an 

important role in regulation of PES.  

 

5. Neurotransmitters in central 
pathways regulating the pancreas 

The brainstem plays an important role in the 

regulation of autonomic outflow to the pancreas. 

The NTS and the DMV have reciprocal 

connections with higher CNS regions, and these 

connections contain many neurotransmitters and 

neuromodulators that influence efferent outflow to 

the pancreas. In addition to receiving inputs from 

other CNS regions, the dorsal vagal complex is a 

circumventricular organ with fenestrated 

capillaries, which expose it to the influence of 

circulating hormones (73). While autonomic 

output to the pancreas can be regulated by 

numerous substances, we will focus on the 

neurotranmsitters that have been most 

extensively studied. 

 

GABA and Glutamate 
 

GABA and glutamate provide major inhibitory and 

excitatory synaptic inputs to pancreas projecting 

DMV neurons, respectively. GABA is the main 

inhibitory neurotransmitter in the CNS and is the 

principal neurotransmitter regulating vagal outflow 

to the pancreas. Microinjections of the GABAA 

receptor antagonist bicuculline into the dorsal 

vagal complex increase pancreatic exocrine 

secretion (7, 56) and glucose-stimulated insulin 

secretion (54), suggesting that GABA exerts a 

tonic inhibition on both pancreatic exocrine 

secretion and insulin release (54). In addition to 

modulating pancreatic functions directly, 

GABAergic synapses in the DMV are subject to 

modulation by various other neurotransmitters 

and hormones. Studies from our laboratory have 

shown that GABAergic synapses impinging on 

pancreas-projecting DMV neurons can be 

modulated by PP, GLP-1, CCK, as well as 

metabotropic glutamate receptor agonists (10).   

 

Although glutamate is one of the principal 

neurotransmitters in synapses impinging onto 

pancreas-projecting DMV neurons, it does not 

appear to exert a major role on pancreatic 

functions under control conditions. In fact, 

microinjections of ionotropic glutamate receptor 

antagonist kynurenic acid into the DMV do not 

affect pancreatic exocrine secretion in control rats 

(9). However, glutamatergic synapses impinging 

on pancreas-projecting DMV neurons are subject 

to modulation by various neurotransmitters and 

hormones (10). Similar to GABAergic synapses, 

glutamatergic synapses are modulated by PP, 

GLP-1 and CCK, as well as by metabotropic 

glutamate receptors (8, 16, 77-79).  

 

Both GABAergic and glutamatergic synapses 

impinging on pancreas-projecting DMV neurons 

express metabotropic glutamate receptors 

(mGluR), which have also been shown to affect 

pancreatic functions (8). Unlike the ionotropic 

glutamate receptors, which couple to ion channels 

and mediate fast synaptic transmission, mGluRs 

are members of G-protein coupled receptor 

(GPCR) family of receptors and couple to different 

second messenger systems. There are eight 

known subtypes of mGluRs, which belong to three 

different groups (group I II and III mGluRs), each 

of which has unique pharmacological 

characteristics (10).  Both GABAergic and 

glutamatergic synapses impinging on pancreas-

projecting DMV neurons express group II and 

group III mGluRs and activation of either receptor 

type decreases inhibitory and excitatory synaptic 

transmission (8). These observations suggest that 
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glutamate released from the synaptic terminals in 

the DMV not only activates pancreas-projecting 

neurons postsynaptically, but also modulates 

synaptic transmission onto these neurons. 

Microinjections of the group II mGluR agonist into 

the dorsal vagal complex increases pancreatic 

exocrine secretion and decreases plasma insulin 

levels, whereas microinjections of the group III 

mGluR agonist decreases plasma insulin, without 

affecting pancreatic exocrine secretion (8). These 

findings further support the suggestion that 

mGluRs modulate pancreatic functions via actions 

on pancreas-projecting DMV neurons. Our 

laboratory has shown that the responsiveness of 

DMV neurons to the group II mGluR agonist is 

altered in a rat model of acute pancreatitis, 

suggesting that these receptors may play a role in 

the development of pathological conditions of the 

exocrine pancreas (9).  

 

Pancreatic polypeptide 
 

Pancreatic polypeptide (PP) is released by the 

cells of the pancreatic islets of Langerhans after 

ingestion of a meal.  The release of PP is vagally 

mediated and involves activation of post-

ganglionic muscarinic acetylcholine receptors 

(36). Circulating PP inhibits PES, not via direct 

actions on the pancreatic acini, but rather via 

actions on the dorsal vagal complex (81). PP 

receptors are not expressed by acinar or ductal 

cells, and isolated acini or ducts are not inhibited 

by PP (62, 81). Instead, PP receptors are 

expressed in the dorsal vagal complex, in the 

area postrema, NTS and DMV (21, 60, 81). 

Microinjections of PP in the dorsal vagal complex 

inhibit pancreatic exocrine secretion by 

modulating vagal cholinergic output, but does not 

affect basal plasma insulin, somatostatin or 

glucagon secretion (42, 60), suggesting that PP 

modulates PES, but not endocrine pancreatic 

secretions. Electrophysiological studies from our 

laboratory have demonstrated that approximately 

half of the identified pancreas-projecting DMV 

neurons respond to PP. In these experiments, PP 

inhibited both excitatory and inhibitory 

postsynaptic currents elicited by the stimulation of 

the NTS and reduced the amplitude of currents 

stimulated by chemical activation of the area 

postrema (16). Interestingly, pancreas-projecting 

DMV neurons that responded to PP did not 

respond to GLP-1, suggesting that these two 

peptides affect separate populations of pancreas-

projecting neurons. 

 

Cholecystokinin 
 

Cholecystokinin (CCK) is released from 

enteroendocrine cells in the small intestine in 

response to ingestion of a meal and exerts 

various effects along the GI tract, including 

increased PES, gastric relaxation, decreased 

gastric acid secretion and reduction of food intake 

(23, 25). CCK exerts its effects both via paracrine 

actions on vagal sensory neurons and via actions 

in the dorsal vagal complex (73). In addition, 

CCK1 receptors are also present on acinar cells 

and CCK can therefore directly influence acinar 

cell function, at least in rodents (reviewed in (20, 

80, 82). CCK-1 receptors are expressed on 

neurons of the dorsal vagal complex and are 

activated by exogenous administration of CCK. 

Intraduodenal infusions of casein, a protein known 

to release endogenous CCK, increased 

pancreatic exocrine secretion even after vagal 

afferent fibers were surgically removed, although 

the response was attenuated. Furthermore, the 

casein-induced increase in pancreatic exocrine 

secretion was attenuated after application of 

CCK-1 receptor blocker in the dorsal vagal 

complex, suggesting that CCK increases 

pancreatic exocrine secretion via centrally-

mediated mechanisms (76). Electrophysiological 

studies from our laboratory have shown that CCK 

excites pancreas-projecting neurons via direct 

effects on DMV neurons and via effects on 

excitatory synapses impinging onto these 

neurons. Neurons that were excited by CCK were 

also inhibited by PP, suggesting that these 

peptides affect the same population of pancreas-

projecting neurons (78).  
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Glucagon-like peptide-1 
 

Glucagon-like peptide-1 (GLP-1) is released from 

intestinal cells into the circulation, where it binds 

to receptors on the pancreatic cells to stimulate 

insulin release. In addition to its actions on 

pancreatic cells, GLP-1 acts via central 

mechanisms to decrease food intake and 

increase insulin secretion (24, 30). GLP-1 

increases the discharge of fibers from the hepatic 

branch of the vagus nerve and selective hepatic 

branch vagotomy attenuated GLP-1-induced 

increase in insulin secretion (58, 59). GLP-1 

administration also increases the expression of c-

fos, an intermediate early gene and a marker of 

neuronal activation, in the NTS (75), providing 

further evidence for central effects of GLP-1. 

Studies from our laboratory have shown that GLP-

1 increases the frequency of excitatory and 

inhibitory synaptic inputs to pancreas-projecting 

neurons in the DMV (8, 77) and that 

microinjections of exendin-4, a GLP-1 analogue, 

into the dorsal vagal complex increased plasma 

insulin levels (8). Taken together, these findings 

suggest that GLP-1 increases pancreatic 

endocrine secretions via actions on DMV neurons 

as well as pancreatic  cells.  

 

Serotonin  
 

Serotonin (5-hydroxytryptamine [5-HT]) modulates 

pancreatic secretions via both direct and indirect 

actions. Serotonin-containing neurons innervate 

the pancreas, stomach and small intestine and it 

has been suggested that serotonin inhibits 

pancreatic exocrine secretion via activation of 

presynaptic receptors on cholinergic neurons, 

although this mechanism has not been fully 

investigated (51). 

 

Serotonin also modulates pancreatic exocrine 

secretion via excitation of vagal afferent fibers 

(44, 85). Vagal deafferentation and serotonin-3 

receptor antagonists have been shown to block 

an increase in pancreatic exocrine secretion 

induced by intraduodenal carbohydrates or 

mucosal stimulation (44). It has also been 

demonstrated that serotonin and CCK have 

synergistic actions in the regulation of pancreatic 

secretion. This suggestion is supported by the 

finding that the CCK-1 receptor antagonists 

attenuate the ability of serotonergic agonist to 

excite pancreatic vagal afferent fibers (55). This 

interaction between serotonin and CCK may 

provide a means to finely tune the regulation of 

the neural control of pancreatic functions.  

 

Thyrotropin-releasing hormone  

 

Thyrotropin-releasing hormone (TRH) receptors, 

as well as TRH-immunoreactive axons that 

originate from the medullary raphe, the 

parapyramidal nuclei and the hypothalamus are 

expressed in the dorsal vagal complex (72). 

Intracerebroventricular and intra-DVC injections of 

TRH increase pancreatic exocrine secretion and 

this effect is prevented by vagotomy, ganglionic 

blockade with hexamethonium, blockade of post-

ganglionic transmission with atropine or by a VIP 

antagonist (39, 52, 61), suggesting that TRH-

induced increase in pancreatic exocrine secretion 

is vagally mediated. 

 

Acetylcholine  
 

The hypothalamus plays an important role in 

modulation of pancreatic secretions. Electrical 

stimulation of the ventromedial anterior 

hypothalamus increases, whereas stimulation of 

the posterior hypothalamus decreases pancreatic 

secretions (28). It has been suggested that 

hypothalamic nuclei that modulate pancreatic 

secretions receive cholinergic inputs from higher 

centers in the CNS. Microinjections of muscarinic 

receptor antagonists into the lateral hypothalamus 

or the paraventricular nucleus of the 

hypothalamus inhibited basal and stimulated 

pancreatic exocrine secretion and central 

depletion of neuronal acetylcholine stores had 

similar effects (47). In contrast, microinjection of 

muscarinic receptor agonists into the 

hypothalamus increased pancreatic exocrine 

secretion (74). Cholinergic inputs to the 

hypothalamus originate in the lateral septum and 
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the lateral parabrachial nucleus, which provide a 

major influence on hypothalamic neurons that 

project to the dorsal vagal complex (47).   

 

Orexin 
 

Neurons in several regions in the CNS, including 

the ventromedial hypothalamus, NTS and the 

DMV, can directly sense changes in glucose 

levels. The lateral hypothalamic area contains 

neurons that are activated by hypoglycemia 

(glucose-inhibited neurons) and those that are 

activated by hyperglycemia (glucose-excited 

neurons) and is known to modulate the efferent 

outflow to the pancreas (53, 84). Orexin-

containing neurons in the lateral hypothalamic 

area project to the parasympathetic and 

sympathetic preganglionic neurons that innervate 

the pancreas (18) and microinjection of orexin-A 

antagonist into the lateral hypothalamic area 

decreases pancreatic vagal nerve activity (84). 

These observations suggest that changes in 

peripheral glucose levels activate glucose-

sensitive orexin neurons in the lateral 

hypothalamic area, which, in turn, activates 

pancreas-projecting neurons in the DMV.  

 

6. Evidence for distinct regulation of 
endocrine and exocrine pancreas 

Several lines of evidence suggest that vagal 

circuits that modulate pancreatic exocrine 

secretion are separate from those that regulate 

pancreatic endocrine secretions.  At the level of 

the pancreas, vagal innervation shows an 

anatomical gradient, with innervation being more 

dense at the head compared to the tail of the 

pancreas (12). The influence of vagal stimulation 

on pancreatic exocrine secretion and endocrine 

secretions depends on either the frequency of 

vagal stimulation or the frequency of action 

potentials in DMV neurons (10). Furthermore, 

although vagal celiac branches innervate the 

splenic end of the pancreas, electrical stimulation 

of the hepatic and gastric branches of the vagus 

are solely responsible for insulin and glucagon 

secretion (13).  This finding suggests that celiac 

branches innervate targets other than pancreatic 

 and  cells. Taken together, these observations 

suggest that vagal circuits are organized in a 

highly specific manner and that separate circuits 

may regulate different pancreatic functions. 

 

Further evidence for distinct circuits regulating 

exocrine and endocrine pancreatic secretions 

came from recent studies in our laboratory. 

Pancreas-projecting neurons in the DMV that 

regulate pancreatic exocrine secretion can be 

distinguished from those regulating insulin 

secretion based on their neurochemical and 

pharmacological properties (7, 8, 77). 

Electrophysiological studies from our laboratory 

have shown that pancreas-projecting neurons that 

respond to GLP-1 do not respond to PP or CCK 

(7, 76), whereas the majority of neurons that 

respond to CCK also respond to PP (7).    This 

observation suggested that pancreas-projecting 

neurons in the DMV comprise at least two distinct 

neuronal populations, one of which responds to 

GLP-1 and the other to CCK and PP. This finding 

also raised the possibility that the two populations 

of neurons may regulate separate pancreatic 

functions. In support of this suggestion, CCK and 

PP have been shown to modulate PES, whereas 

GLP-1 modulates insulin release (10). We have 

shown that microinjections of GLP-1 into the DVC 

increase plasma insulin levels, but have no effect 

on PES, whereas microinjections of CCK and PP 

in the DVC increase pancreatic exocrine secretion 

(8). Furthermore, we have demonstrated that in 

rats with copper deficiency, which selectively 

destroys the exocrine pancreas while leaving the 

islets of Langerhans unaffected, DMV neurons 

display a diminished responsiveness to CCK and 

PP, peptides that selectively regulate pancreatic 

exocrine secretion (7). This evidence further 

supports the idea that separate neuronal 

populations within the DMV regulate pancreatic 

exocrine secretion and insulin release.  

 

DMV neurons that regulate pancreatic exocrine 

secretion can also be distinguished from those 

that regulate insulin release based on their 

responses to metabotropic glutamate receptor 
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(mGluR) agonists and antagonists (8). Using 

single-cell patch-clamp, we demonstrated that 

both group II and group III mGluRs are present on 

excitatory (glutamatergic) and inhibitory 

(GABAergic) synapses impinging on identified 

pancreas-projecting neurons in the DMV (8).  

Application of a group II mGluR (mGluRII) agonist 

reduced the frequency of postsynaptic currents in 

the vast majority of excitatory (89%) and inhibitory 

(71%) synaptic terminals, whereas application of 

mGluRIII agonist affected a smaller proportion of 

excitatory (65%) and inhibitory (58%) synapses. 

All neurons that responded to the mGluRIII 

agonist also responded to the mGluRII agonist, 

whereas another population of neurons 

responded only to mGluRII agonist. Further 

analysis revealed that a majority of neurons that 

responded to the mGluRIII agonist also 

responded to the GLP-1 analogue exendin-4, but 

not to CCK or PP. Conversely, neurons that did 

not respond to the mGluRIII agonist responded to 

PP and CCK, but not to exendin-4. These findings 

suggested that group III mGluRs modulate the 

activity of a specific subpopulation of pancreas-

projecting neurons in the DMV that has a unique 

neurochemical phenotype and raised the 

possibility that this population of neurons 

modulates a specific pancreatic function, namely 

insulin secretion (8). 

In order to determine the roles of these neuronal 

populations in modulating pancreatic functions, 

we conducted a series of in vivo experiments 

using DVC microinjections while monitoring 

pancreatic exocrine secretion and insulin 

secretion. Microinjections of the mGluRII agonist 

into the DVC dose-dependently increased 

pancreatic exocrine secretion and decreased 

plasma insulin levels, whereas microinjections of 

the mGluRIII agonist decreased insulin levels, but 

had no effect on PES. Taken together with the 

patch-clamp data described earlier, these findings 

suggested that DMV synaptic terminals that 

express mGluRIII modulate insulin release, 

whereas terminals that express mGluRII modulate 

both pancreatic exocrine secretion and insulin 

release (8).  

 

Further support for the regulation of endocrine 

and exocrine function by separate pathways came 

from studies using models of pancreatic 

disorders. A study from our laboratory has shown 

that copper deficiency, which selectively destroys 

the exocrine pancreas while leaving the endocrine 

pancreas intact, affects DMV neurons that 

regulate pancreatic exocrine secretion (7). 

Intraduodenal infusions of CCK or casein, potent 

stimulators of pancreatic exocrine secretion in 

control conditions, failed to increase pancreatic 

exocrine secretion in copper deficient rats. This 

lack of an effect was accompanied by a reduction 

in the number of tyrosine hydroxylase-

immunoreactive neurons in the DMV, suggesting 

that there was a reduction in catecholaminergic 

regulation of pancreatic exocrine secretion (7). 

Furthermore, electrophysiological evidence 

showed that fewer pancreas-projecting DMV 

neurons responded to CCK and PP in copper 

deficient rats compared to controls. Interestingly, 

while copper deficiency affected postsynaptic 

responses to these peptides, it did not affect 

presynaptic responses, suggesting that copper 

deficiency selectively affects pancreas-projecting 

neurons in the DMV, while leaving the sensory 

synaptic inputs onto these neurons intact (7).  

 

Synaptic inputs to pancreas-projecting DMV 

neurons are also affected by acute pancreatitis, a 

severe, and sometimes fatal, disorder of the 

exocrine pancreas. Acute pancreatitis is 

characterized by premature activation of 

zymogens leading to acinar cell injury, release of 

chemokines and cytokines and an inflammatory 

response (71). Although early events that lead to 

the development of acute pancreatitis are initiated 

in the pancreas, it has also been shown that 

severity of acute pancreatitis is modulated by the 

CNS. Our laboratory, for example, has 

demonstrated that acute pancreatitis alters the 

sensitivity of pancreas-projecting DMV neurons to 

group II mGluR agonist, which, in turn, changes 

the balance of glutamatergic and GABAergic 

synaptic inputs to DMV neurons. Specifically, we 

demonstrated that acute pancreatitis decreases 

the response of glutamatergic synaptic terminals 
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in the DMV to group II mGluR agonist. In contrast, 

group III mGluRs do not appear to be affected by 

acute pancreatitis (9). These findings suggest that 

acute pancreatitis selectively affects DMV 

neurons involved in the regulation of pancreatic 

exocrine secretion and further supports the notion 

that exocrine and endocrine pancreatic secretions 

are regulated by separate neuronal populations. 

 

7. Summary 

The pancreas plays an important role in the 

control of nutritional homeostasis. Pancreatic 

functions are regulated by finely tuned inputs from 

the sympathetic and parasympathetic branches of 

the autonomic nervous system, which perform as 

an integrated neural circuit to adapt exocrine and 

endocrine secretions to constantly changes 

environmental and physiological conditions.   

 

An increasing amount of experimental evidence 

indicates that autonomic pathways involved in 

regulation of pancreatic function are organized in 

a highly specific manner, with distinct pathways 

regulating endocrine and exocrine secretions. It is 

therefore important to understand how specific 

neural pathways regulate pancreatic secretions 

and to identify neurotransmitter and receptor 

phenotypes involved in regulation of specific 

pancreatic functions. Data from our laboratory 

have shown that DMV neurons that regulate 

exocrine and endocrine secretions can be 

differentiated by their responses to CCK, PP and 

GLP-1, as well as their responses to group II and 

group III mGluRs. Thus, in order to completely 

understand the role of the central nervous system 

in the regulation of pancreatic functions, future 

studies should be aimed at further characterizing 

neuropeptides and receptors involved in 

regulation of various pancreatic functions. Data 

from animal models suggests that pathological 

conditions that affect the pancreas, including 

diabetes and acute pancreatitis, induce 

neurochemical changes in DMV neurons. 

Therefore, understanding of specific pathways 

that regulate exocrine and endocrine secretions 

would provide novel targets for the treatment of 

these disorders. Further studies of neuropeptides, 

their receptors and receptor pharmacology in 

pathological conditions are needed to fully 

understand the contribution of neural regulation in 

disorders of the pancreas. 
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