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I. Introduction 
The human exocrine pancreas secretes 1-2 liters 
of pancreatic juice each day. When stimulated, the 
pancreas secretes alkaline pancreatic juice 
containing copious amounts of bicarbonate (HCO3

-) 
(27, 86). HCO3

- plays essential roles in the 
digestive system. HCO3

- determines the pH of 
bodily fluids as the major buffer system that guards 
against toxic pH fluctuations (133). HCO3

− in 
pancreatic juice neutralizes gastric acid, and 
provides an optimal pH environment for digestive 
enzymes to function in the duodenum (86). In 
addition, HCO3

− acts as a moderate chaotropic ion 
that facilitates the solubilization of macromolecules, 
such as digestive enzymes and mucins (47). The 
importance of pancreatic HCO3

- secretion is 
highlighted in the abnormal HCO3

- secretion in 
several forms of pancreatitis (118, 168) and in 
cystic fibrosis (CF), which causes poor mucin 
hydration and solubilization leading to obstruction 
of ductal structures of the pancreas, intestine, vas 
deferens and the lung (129, 130). 
The exocrine pancreas is composed of three major 
cell types, acinar, duct and stellate cells. Acinar 
cells secrete a small volume of isotonic, plasma-
like, NaCl-rich fluid and digestive enzymes. Duct 
cells modify the ionic composition of the fluid and 
secrete the bulk of the fluid and HCO3

−of the 
pancreatic juice. Stellate cells may aid the 

pancreas recovery from injury (82). As the main 
HCO3

- secretor, the duct has key roles in the 
development of acute and chronic pancreatitis. At 
pH 7.4 and 5% CO2, the HCO3

- concentration in 
plasma is approximately 25 mM. In human, dog, 
cat, and guinea pig, HCO3

- concentration in 
postprandial pancreatic juice is higher than 140 
mM (27, 86). This remarkable transport 
performance has attracted much attention from 
pancreatologists and physiologists. Current 
understanding of the molecular mechanism of 
pancreatic HCO3

- secretion was improved by the 
recent identification of ion transporters and 
channels, including the cystic fibrosis 
transmembrane conductance regulator (CFTR) 
(69), the electrogenic Na+-HCO3

- co-transporter 
NBCe1-B (also known an pNBC1) (1), and the 
solute-linked carrier 26 (SLC26) transporters (29, 
116), together with regulatory proteins, such as 
with-no-lysine kinase 1 (WNK1) (119), 
STE20/SPS1-related proline/alanine-rich kinase 
(SPAK) (35) and the inositol-1,4,5-triphosphate 
(IP3) receptor binding protein released with IP3 
(IRBIT) (163) and their role in pancreatic HCO3

- 
secretion. 

II. Control of Pancreatic HCO3- 
Secretion  

Pancreatic HCO3
- secretion increases in response 
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to ingestion of a meal and is regulated by multiple 
neurohumoral inputs. Fluid and enzyme secretion 
by acinar cells are controlled predominantly by an 
increase in cytoplasmic free Ca2+ concentration 
([Ca2+]i) (103, 123, 124). Fluid and HCO3

- secretion 
by duct cells are regulated by the second 
messengers cAMP (86, 101) that synergizes with 
Ca2+ to generate the physiological response (4, 97, 
122). Pancreatic ductal cells express receptors for 
a battery of hormones and neurotransmitters. The 
two major hormones controlling pancreatic fluid 
and HCO3

- secretion are the Gs-coupled, cAMP 
generating hormone secretin and the Gq-coupled, 
Ca2+ mobilizing hormone cholecystokinin (CCK), 
which are released from gastrointestinal endocrine 
cells in the upper duodenum. Cholinergic vagal 
output via an enteropancreatic vagovagal reflex 
also has an important role in controlling ductal fluid 
and HCO3

- secretion. In addition to these classic 
stimuli, several other humoral agents are released 
by the pancreas for fine tuning its secretion, 
including insulin, somatostatin, purines, and 
prostaglandins (90). Additional information on 
hormonal control of pancreatic secretion can be 
found in a previous review (86) and the “Regulation 
of Pancreatic Secretion” section in Pancreapedia 
(21).  

A. Humoral Control 

Secretin  

The low pH (below 4.5) of gastric chyme stimulates 
the release of secretin from duodenal S cells into 
the blood (15, 22). Secretin stimulates ductal fluid 
and HCO3

- secretion and synergizes with Ca2+ 
mobilizing agonists to potentiate enzyme secretion 
by acinar cells. Plasma secretin levels rise after a 
meal (22, 127) and correlate with HCO3

- output 
(135). Secretin-stimulated fluid and HCO3

- 
secretion is modulated directly or indirectly by both 
peptide hormones, such as CCK and somatostatin, 
and by vagal stimulation (43, 77, 167).  

CCK  

CCK is a major stimulator of acinar cell enzyme 

and fluid secretion which is mediated by the Ca2+-
dependent exocytosis of zymogen granules and 
activation of apical (luminal) Cl- channels, 
respectively. The synaptotagmins are the Ca2+ 
sensor that convey the Ca2+ signal for pancreatic 
exocytosis (104) and Ca2+ activates the Ca2+-
activated Anoctamin 1 (TMEM16A) to initiates 
acinar cells fluid secretion (117). CCK also acts on 
pancreatic duct secretion; however, the effects of 
CCK on pancreatic duct differ among species. In 
humans, the effect of CCK alone on ductal fluid 
secretion is weak; however, CCK greatly 
potentiates the effects of secretin (167).  

Purines  

Pancreatic duct cells express multiple purinergic 
type 2 receptor (P2Rs) types, including ionotropic 
P2X and metabotropic P2Y receptors at the apical 
and basolateral membranes (96). P2Rs are 
stimulated by purinergic ligands released from 
nerve terminals at the basolateral space, zymogen 
granules of acinar cells into the luminal space, or 
efflux by ductal ATP transporters to both the 
basolateral and luminal compartments (79). 
Stimulation of P2Rs increases [Ca2+]i in duct cells 
(112, 114). Several studies have examined effects 
of P2Rs on ion transporters in ductal cell lines, but 
there are almost no studies on ductal fluid and 
HCO3

- secretion. Ishiguro et al. demonstrated that 
luminal ATP stimulated, while basolateral ATP 
inhibited fluid and HCO3

- secretion in guinea-pig 
pancreatic duct (57). More recent studies 
examined the effect of various stimuli and ion 
channels of ATP release from ductal cell lines (79) 
that will be important to verify in native ducts.   

B. Neuronal Control 

Pancreatic secretion is regulated by the enteric 
nervous system, which is composed of a gut-brain 
axis and an intrapancreatic system. The major 
neurotransmitter acting on pancreatic duct cells is 
acetylcholine released by vagal parasympathetic 
fibers. Duct cells express both M1 and M3 
muscarinic receptors, which act through changes 
in [Ca2+]i. The M3 receptors maybe more prominent 
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based on their higher expression level relative to 
the M1 receptors (36, 71). In humans, cholinergic 
stimulation enhances ductal secretion stimulated 
by secretin, likely by synergistic mechanism that is 
mediated by IRBIT (4, 122). Vasoactive intestinal 
peptide (VIP) and ATP are also localized in 
parasympathetic nerve terminals (78, 113). Vagal 
stimulation causes VIP release that is associated 
with fluid and HCO3

- secretion (52, 64, 78). 

III. Key Transporters Involved in 
Pancreatic HCO3- Secretion 

Pancreatic HCO3
- secretion is mediated by a 

coordinated function of transporters expressed in 
the apical and basolateral membranes of duct cells. 

Pancreatic HCO3
- secretion can be divided into 2 

steps. The first step is uptake of HCO3
- into duct 

cells from the blood through the basolateral 
membrane. The second step is efflux of HCO3

- 
across the apical membrane of duct cells. 
Regulatory mechanisms in the cytosol that include 
ions like Cl- and several kinases and phosphatases, 
act on the transporters to coordinate and integrate 
the secretory process. Recent advances in 
molecular, cellular, and physiological techniques 
have enhanced our understanding of the molecular 
identity, localization, function, and regulatory 
mechanisms of ductal ion transporters (4, 87, 97). 
The major ion transporters expressed in the apical 
and basolateral membranes of the pancreatic duct 
cells are summarized in Table 1 and Figure 1. 

Figure 1.  A schematic diagram depicting the transporters and channels in the apical (luminal) and basolateral membranes of 
pancreatic duct cells. The main driving force for HCO3- secretion is achieved by the Na+ gradient generated by the Na+/K+ ATPase 
pump and K+ channels at the basolateral membrane, which generate the intracellular negative membrane potential. HCO3- is 
loaded mainly through the electrogenic (1Na+-2HCO3-) NBCe1-B, and partly by NHE1 located in the basolateral membrane. 
Basolateral AE2 may act to supply Cl-in to maintain the secretion. Apical HCO3- secretion is performed by the interacting and 
functionally interrelated CFTR and Slc26a6. Transcellular HCO3- movement generates a lumen-negative electrical potential that 
results in paracellular Na+ secretion through the paracellular pathway. Water follows Na+ and HCO3- osmotically via paracellular 
and transcellular (aquaporins) pathways. In the resting state, luminal NHE3 and NBCn1-A function as salvage luminal HCO3-. 
Modified from (87). 
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Table 1: Transporters of pancreatic duct 

Transporters in the luminal membrane of pancreatic duct 

Transporters Gene Function 
cAMP-activated Cl- 
channel 

CFTR (ABCC7) Fluid and HCO3- secretion  

Ca2+-activated Cl- 
channel 

TMEM16/ANO family  Cl- and HCO3-(?) secretion, lipids flipping  

Anion exchangers SLC26A3 (DRA/CLD) HCO3- secretion, electrogenic Cl-/HCO3- exchanger 
(Cl-:HCO3- stoichiometry of 2:1 or higher) 

PAT1 (SLC26A6) HCO3- secretion, electrogenic Cl-/HCO3- exchanger 
(Cl-:HCO3- stoichiometry of 1:2) 

Na+/H+ exchangers NHE3 (SLC9A3) HCO3- reabsorption (HCO3- salvage mechanism) 

NHE2 (SLC9A2) HCO3- reabsorption (?) 
Na+-HCO3- 
cotransporter 

NBCn1-A (NBC3, 
SLC4A7) 

HCO3- reabsorption (HCO3- salvage mechanism) 

K+ channels Maxi- K+ channels 
(KCNMA1?) 

Maintain membrane potential during stimulated secretion 
Modulate luminal HCO3- secretion 

Water channel Aquaporin 5 (AQP5)  H2O flow 

Transporters in the basolateral membrane of pancreatic duct 

Transporters Gene Function 
Na+/H+ exchangers NHE1 (SLC9A1) Na+-coupled H+ extrusion, pHin homeostasis 

Contribute to basolateral HCO3- influx 

NHE4 (SLC9A4) Role uncertain 

Na+-HCO3- 
cotransporters 

NBCe1-B (pNBC1, 
SLC4A4) 

Basolateral HCO3- entry  

Anion exchangers AE2 (SLC4A2) pHin homeostasis, Cl-in supplier (?) 
 

Cation-chloride 
cotransporters 

Na+-K+-2Cl- cotransporter 
(NKCC1, SLC12A2) 
K+-Cl- cotransporter 
(KCC1, SLC12A4) 

Basolateral Cl- uptake 
(in mouse and rat ducts, but not in guinea pig and 
human)   
Basolateral K+ and Cl- efflux 
Cell volume regulation 

K+ channels Maxi- K+ channels 
(KCNMA1) 

Maintain membrane potential during stimulated secretion  

Small or intermediate 
conductance K+ channels 
(KCNN4) 

Maintain resting membrane potential 

Na+, K+-ATPase 

 

Na+, K+-ATPase 
(ATP1B1-3) 

Maintain inward Na+ gradient and outward K+ gradient 
that determines the membrane potential 

Water channels Aquaporin 1 (AQP1) Water transport 
Aquaporin 5 (AQP5) Water transport 

Carbonic Anhydrases CAXII HCO3- supply to AE2 and NBCe1-B 
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A. Na+/K+ ATPase, and K+ Channels 

The main driving force for fluid secretion is 
achieved by the Na+/K+ ATPase pump and K+ 
channels which generate the transmembrane Na+ 
and K+ gradients and the negative intracellular 
membrane potential (87, 118). The Na+/K+ ATPase 
pump is expressed in the basolateral membrane of 
the ducts (99, 134, 145, 150), and generates the 
Na+ and K+ gradients by extruding 3 Na+ ions in 
exchange for uptake of 2 extracellular K+ ions using 
the energy of ATP hydrolysis. K+ channels in both 
the basolateral and apical membranes use the K+ 
gradient generated by the pump to generate a 
negative membrane potential. The Na+ gradient is 
used to drive several Na+-coupled solutes, 
including HCO3

- absorption by the basolateral Na+-
HCO3

- cotransporter NBCe1-B and basolateral and 
luminal Na+/H+ exchangers (NHEs). The negative 
membrane potential aids in controlling HCO3

- 
uptake by NBCe1-B and in HCO3

- efflux through 
luminal electrogenic transporters. MaxiK channels 
(KCNMA1) have been identified on the basolateral 
membrane of rat pancreatic duct cells, and are 
likely candidates for maintaining the membrane 
potential during agonist-stimulated HCO3

- 
secretion (38). A Ba2+-sensitive channel of 82 pS 
conductance (KCNN4) appears to be a basolateral 
K+ channel, which is responsible for the resting K+ 
permeability (115). Apical membrane K+ channels 
were identified in acinar cells (5) and in pancreatic 
duct cells, with the later having a role in ductal 
HCO3

- secretion (155).   

B. Na+-HCO3- Co-transporters (NBCs)  

The main ductal basolateral membrane HCO3
- 

accumulation transporter is NBCe1-B (87). 
NBCe1-B was cloned from pancreas and was 
named pNBC1 (1). It was later re-named NBCe1-
B as part of classification of the NBC family (14). 
NBCe1-B is an electrogenic transporter with a 1 
Na+: 2 HCO3

- stoichiometry in pancreatic duct cells 
(42). NBCe1-B can be regulated by cAMP-
dependent protein kinase A (PKA) phosphorylation 
at Ser1026 and Thr49 (41). In principle, Na+/H+ 

exchangers in the basolateral membrane (e.g. 
NHE1) can also mediate HCO3

- influx in duct cells. 
However, the electrogenic NBCe1-B utilizes the 
Na+ gradient more efficiently than the 
electroneutral NHE1 (1 Na+: 1 HCO3

-). Indeed, 
NBCe1-B contributes up to ~75% of the HCO3

- 
influx during secretin-induced ductal fluid and 
HCO3

- secretion in guinea pig (60, 62). The activity 
of NBCe1-B is controlled by multiple inputs, 
including IRBIT and the WNK/Ste20-related 
proline/alanine-rich kinase (SPAK) pathway (143, 
164) and most notably intracellular Cl- (138). A 
more recent analysis revealed an intricate 
regulation of NBCe1-B by the WNK and CaMKII 
(Ca2+ and calmodulin activated kinase II) kinases 
and the SPAK and calcineurin phosphatases the 
dephosphorylate the serine residues 
phosphorylated by the respective kinases (153). 
The kinases/phosphatases pairs determine 
regulation of NBCe1-B by Cl-in (153), which 
emerges as a new general form of signaling ion 
(97). In addition to NBCe1-B, the duct expresses 
electroneutral NBCn1-A (NBC3) on the apical 
(luminal) membrane (120, 128). This transporter 
may mediate HCO3

- salvage in the resting state to 
maintain acidified pancreatic juice (37, 100).  

C. CFTR  

The discovery of acidic pancreatic juice in patients 
with cystic fibrosis (CF) was a milestone in 
understanding the mechanism of pancreatic HCO3

- 
secretion (65, 81). The CF transmembrane 
conductance regulator (CFTR) was discovered as 
the protein mutated in patients with CF (69, 131, 
132). Although CFTR is a member of the ATP-
binding cassette (ABC) transporter superfamily 
that usually act as membrane pumps that transport 
their substrates against the electrochemical 
gradient (24), CFTR functions as an anion (Cl- and 
HCO3

-) channel, through which ions diffuse down 
the electrochemical gradient. CFTR is located at 
the apical membrane of pancreatic ducts (20, 148, 
170) (and all secretory epithelia), and is activated 
by the cAMP/PKA pathway. At [Cl-]i higher than 10 
mM, CFTR functions as a Cl- channel that has 
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limited permeability to HCO3
- (92, 126, 137). 

However, when [Cl-]i drops to below 10 mM, CFTR 
anionic selectivity changes to increase HCO3

- 
permeability and mediate luminal HCO3

- exit (67, 
119). Indeed, as has been shown in patients with 
CF (20, 56, 148), CFTR is critically involved in 
epithelial HCO3

- secretion. This leads to revision of 
the original model of ductal HCO3

- secretion, in 
which Cl-/HCO3

- exchangers mediate apical HCO3
- 

efflux and CFTR facilitates the apical Cl-/HCO3
- 

exchangers by recycling the Cl- (12). This 
continues to be the case at high Cl-in. However, at 
low [Cl-]i, HCO3

- efflux via CFTR driven by the 
membrane potential has essential role in HCO3

- 
efflux and HCO3

--driven fluid secretion in the 
pancreatic duct (61, 147). The dynamic change in 
CFTR Cl-/HCO3

- permeability is mediated by the 
protein kinase WNK1 (70, 119). WNK1 (125) and 
other members of the WNK kinases are regulated 
by Cl-in, with high Cl-in in the low (WNK4) and high 
(WNK1) range inhibiting the WNKs. Reduction in 
Cl-in activates the WNKs that act directly or through 
SPAK on CFTR and other HCO3

-, Na+, Cl- and K+ 
transporters (97). To regulate their activity and 
selectivity. If is of interest that the WNKs show 
differential sensitivity to Cl-in and effect on the 
transporters (151, 163). Thus, a modest reduction 
in Cl-in is sufficient to activate WNK1 and increase 
HCO3

- transport by CFTR (119). Further reduction 
in Cl-in will activate WNK4 that inhibits CFTR 
activity (163), perhaps to prevent excess HCO3

- 
secretion, that is energetically very expensive 
involving transport by multiple electrogenic 
transporters. The significance of CFTR-dependent 
HCO3

- secretion in CFTR-expressing epithelia, 
including the pancreas, has been established in a 
study correlating CFTR-dependent HCO3

- 
transport and severity of the CF disease (23). The 
importance of the shift in the WNK1-mediated shift 
in CFTR HCO3

- selectivity has been clearly 
demonstrated in a study that examined 
pancreatitis-associated CFTR mutations with 
altered WNK1-mediated increase in HCO3

- 
permeability and found clear correlation between 
reduced HCO3

- permeability and chronic 
pancreatitis in humans (83). 

CFTR has a more global role in ductal fluid and 
HCO3

- secretion. In addition to functioning as a Cl- 
and HCO3

- channel, CFTR functions as a scaffold 
forming macromolecular complexes with other 
transporters and regulatory proteins at the apical 
membrane (87). CFTR has a PSD95/Discs-
large/ZO-1 (PDZ) ligand at the C-terminus and 
binds to PDZ domains of adapter proteins, such as 
Na+/H+ exchanger regulatory factors (NHERFs). It 
also has SH3 and multiple ankyrin repeat domains 
2 (Shank2) (84, 144), through which CFTR 
interacts and regulates the activity of slc26a6, 
slc26a3 (75), NHE3 (3) and NBCn1-A (120). Other 
interactions of CFTR are with soluble NSF 
attachment protein receptor (SNARE) proteins, A-
kinase anchor proteins (AKAPs), kinases and 
phosphatases (44) that may serve to regulate 
CFTR activity and the activity of the transporters 
interacting with CFTR. The interaction with the 
SLC26 transporters is of particular significance 
since the two transporters are mutually activated 
when interacting (75, 76). The mutual regulation is 
mediated by interaction of the CFTR R domain with 
the SLC26 transporters STAS domain (76).  

D. Cl-/HCO3- Exchangers  

Cl-/HCO3
- exchangers mediate the bulk of HCO3

- 
exit across the apical membranes of the pancreatic 
duct cells until the last portion of HCO3

- exit that is 
mediated by CFTR once it gains HCO3

- 
permeability. In humans, members of the solute-
linked carrier 4 (SLC4) and the SLC26 families 
function as Cl-/HCO3

- exchangers. Among the 
SLC4 transporters, duct cells express AE2 
(SLC4A2) at the basolateral membrane that 
regulates pHi and protects against alkaline load 
(118). However, our studies revealed an essential 
role for AE2 in ductal fluid and HCO3

- secretion (53). 
Intuitively, basolateral HCO3

- efflux mechanism 
should inhibit rather than stimulate ductal HCO3

- 
secretion. It is not clear why AE2 is essential for 
ductal fluid secretion. Maintaining stable pHin that 
neutralize acid load by the Na+/H+ exchangers and 
high pH next to the plasma membrane is one 
potential critical function of AE2. Another possibility 
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is that AE2 may provide the duct with Cl- that is 
needed to keep the luminal slc26a6 functioning in 
a face of limited Cl- provided by acinar secretion 
(53).   

Among the SLC26 family transporters, SLC26A3, 
and SLC26A6 are located on the apical membrane 
of the pancreatic duct cells and mediate Cl-/HCO3

- 
exchange. Interestingly, SLC26A3 has a 2Cl-
/1HCO3

- stoichiometry (76, 139), while SLC26A6 
functions as a 2HCO3

-/1Cl- exchanger (72, 139). A 
persistent osmotic gradient is needed to support 
the copious fluid secretion by the pancreatic duct. 
This is satisfied by the coupled action of NBCe1-B 
and SLC26A6 that results in a continuous net 
HCO3

- (osmolyte) transcellular transport and thus 
transcellular H2O flow (140, 149, 159). In addition, 
as indicated above, SLC26 transporters interact 
with CFTR through the sulfate transporter and anti-
sigma factor antagonist (STAS) domain, and 
regulate pancreatic secretion by activating CFTR 
(76). This form of regulation is critical for pancreatic 
and other exocrine glands HCO3

- secretion, 
including the pancreas, salivary glands, the kidney 
and the lung (91).   

E. Other Transporters, Channels, and 
Carbonic Anhydrases 

Na+/H+ exchangers (NHEs)  

The SLC9A NHE family contains electroneutral 
1Na+/1H+ exchangers. The ubiquitous NHE1 
(SLC9A1) is essential for intracellular pH 
homeostasis and supplies Na+ to the Na+/K+ 
ATPase pump on the basolateral membrane of the 
pancreatic duct (171). Diffusion of CO2 from the 
blood into the duct and CO2 generated by 
metabolism is hydrated by the action of carbonic 
anhydrases to generate HCO3

- and H+. 
Consequently, H+ efflux by NHE1 may contribute to 
basolateral HCO3

- uptake. However, NHE1 does 
not have a major role in basolateral HCO3

- influx as 
revealed by minimal inhibition of fluid and HCO3

- 
secretion by inhibition of NHE1 in pancreatic duct 
of most species (154, 162). The NHE3 isoform is 
expressed in the apical membrane of pancreatic 

duct and is thought to mediate HCO3
- salvage at 

the resting state (85). At the resting state, the 
pancreatic juice is acidic, indicating an active H+ 
secretion (37, 100) that may be mediated by the 
combined action of NHE3 and NBCn1-A. Similar to 
NBCn1-A (120), NHE3 interacts with CFTR via 
PDZ domain containing proteins (3), and is 
regulated by IRBIT (48, 49). However, the 
physiological significance of these transporters 
await evaluation in mouse models with targeted 
pancreatic deletion of ductal NHEs and NBCn1-A.    
 
Ca2+-activated Cl- channels (CaCCs)  

Several members of the anoctamin 
(TMEM16/ANO) family function as CaCC (18, 136, 
166). TMEM16A/ANO1, TMEM16B/ANO2, 
TMEM16F/ANO6, TMEM16H/ANO8, and 
TMEM16K/ANO10 are expressed in pancreas (87). 
However, ANO1 is expressed in acinar but not duct 
cells (136), ANO6 functions as a flipase and as a 
Cl- channel (150) and ANO8 is a tether at the 
ER/PM junctions that controls assembly of Ca2+ 
signaling complexes (63). The function of ANO2 
and ANO10 in the pancreas is not clear at this time. 
Nevertheless, ample evidence shows that the 
pancreatic duct (and ducts of other secretory 
glands) has CaCC activity in the apical membrane 
(39, 40, 157, 169). The molecular identity of this 
channel is not known at present, nor its function in 
HCO3

- secretion. ANO6 appears to function as a 
Ca2+-activated Cl- channel in the intestine that 
participates in fluid and electrolyte secretion (11), 
and may have a similar function ion the pancreatic 
duct. Several other CaCCs are known and are 
candidates for the ductal CaCC. In pancreatic 
acinar cells and other serous cells, ANO1 may 
have a role in HCO3

- transport. At physiological 
[Ca2+]i concentrations ANO1 functions as a Cl- 
channel. However, at high [Ca2+]i and perhaps at 
high [Ca2+]i microdomains, ANO1 HCO3

- 
permeability is increased by Ca2+/calmodulin (66, 
68), raising the possibility that ANO1 can provide 
an alternative Cl- and HCO3

- conduction in acinar 
cells (142).  
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Aquaporins  

Although the paracellular pathway is permeable to 
H2O, H2O flows mostly transcellularly via the water 
channels aquaporins (AQP) family. This is best 
illustrated in salivary glands, where knockout of 
AQP5 markedly reduces salivation (98). Among 
the 13 AQPs, AQP1 and AQP5 are the major 
aquaporins in pancreatic duct (17, 73, 74). AQP1 
is expressed in the luminal membrane of human 
acinar and duct cells and is significantly reduced in 
chronic pancreatitis (156). Moreover, deletion of 
AQP1 in mice prominently inhibits ductal and 
pancreatic fluid and HCO3

- secretion, due to both 
reduction in fluid transport and in CFTR expression 
and activity and thus HCO3

- secretion (156). The 
role of AQP5 in the duct and pancreatic secretion 
has not been established yet. 

Carbonic Anhydrases  

A poorly studied topic that deserve more attention 
is the role of the ductal carbonic anhydrases (CAs) 
in fluid and electrolyte secretion, in particular with 
the emerging secretory epithelial diseases due to 
mutations in CAs. Mutations that affect the action 
of CA4 cause retinitis pigmentosa (7) and a 
mutation in CA12 causes salt wasting (32, 106). All 
transporters involved in fluid and HCO3

- secretion 
are affected by HCO3

- concentration at the cellular 
compartments and microdomains that determine 
HCO3

- availability at plasma membrane inner and 
outer surfaces. Hydration of CO2 by CAs 
determines local HCO3

- concentration both at the 
outer and inner plasma membrane surfaces (102). 
Several CAs are localized in the cytoplasm (such 
as CA2 and CA7) and several are anchored at the 
plasma membrane (such as CA4, CA12 and CA14) 
with the catalytic site at the extracellular surface 
and regulate HCO3

- concentration at the 
basolateral (CA4 and CA12), or the luminal (CA4) 
membrane surfaces (33).  

CAs localized in the plasma membrane and 
cytoplasm interact with H+ and HCO3

- transporters 
that mediate ductal fluid and HCO3

- secretion and 
regulate their activity. CA4 interacts with the C 

terminus of NBCe1-A to increase its activity (6). 
The C terminus of NBCe1-A and NBCe1-B are 
conserved and thus it is likely that CA4 regulates 
NBCe1-B. NBCn1-A recruits the cytoplasmic CA2 
to the plasma membrane, where CA2 increases 
the activity of NBCn1-A (95). CA2 is closely 
associated with NHE3 and increases NHE3 activity 
(80). CA2 interacts with a novel site at the C 
terminus of NHE1 to regulate NHE1 activity (89). 
CA2 has been reported to interact with the C 
terminus of slc26a6 to increase its activity. 
However, the role of other CAs, in particular the 
plasma membrane anchored CAs, on the activity 
of the slc26a6 and other SLC26 transporters has 
not been investigated yet. Finally, CA2 also 
interacts with AQP1 to increase water flux by AQP1 
by an unknown mechanism (158). A particularly 
interesting CA is the basolateral membrane 
anchored CA12 with its catalytic site at the 
extracellular membrane surface. A human mutation 
in CA12(E143K) is the cause of an autosomal 
recessive form of salt wasting, which leads to 
hyponatremia with hyperkalemia, high sweat Cl-, 
dehydration and failure to thrive. (31, 32, 106). A 
recent work to understand the cause of the disease 
established a prominent role for CA12 in ductal 
fluid and HCO3

- secretion. Thus, CA12 increased, 
while CA12 (E143K) markedly reduced ductal fluid 
secretion in isolated ducts and in vivo. This could 
be attributed to a potent stimulation of ductal and 
topically expressed AE2 by CA12 (53). The E143K 
mutation is a folding mutation that resulted in 
retention of CA12(E143K) in the ER (53). How 
exactly CA12 with an external catalytic site 
activates AE2 is not obvious. CA12 may clear the 
extruded HCO3

- from the membrane surface to 
prevent its buildup at the mouth of the AE2. If this 
can be established, it will be a new mode of 
regulating HCO3

- transporters by CAs.             

IV. Regulation and Mechanism of 
Pancreatic HCO3- Secretion  

A. Intracellular Signaling Pathways: cAMP and 
Ca2+ 
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The cAMP/PKA pathway is central in inducing 
ductal HCO3

- secretion. Secretin is the major 
hormone that activates the cAMP pathway. VIP 
also signals to increase cAMP via VIP receptors 
(VPAC1) (30, 152). At maximal receptor stimulation, 
the cAMP/PKA pathway can fully activate fluid and 
HCO3

- secretion by activation of the apical CFTR 
and the basolateral Na+-HCO3

- cotransporter, 
NBCe1-B (165). However, at physiological 
conditions the cAMP/PKA pathway synergizes with 
the Ca2+ signaling pathway to activate the 
secretory process (see below).  

Several agonists that act on the pancreatic duct 
engage the Ca2+ signaling pathway. These include 
CCK, cholinergic stimuli, P2Rs, and protease-
activated receptor 2 (PAR2) receptors (71, 124). 
When activated, the CCK and muscarinic 
receptors activate PLCβ to generate IP3 that 
releases Ca2+ from intracellular stores, mainly the 
endoplasmic reticulum (ER) and activates the 
membrane Ca2+ influx channels, Orai and TRPC. 
P2Rs (96, 110) and PAR2 (8, 107, 109, 111) also 
act through activation of the Ca2+ signaling pathway. 
At physiological stimulus intensity, the cAMP and 
Ca2+ signaling pathways synergize to activate 
ductal secretion (67). Early studies in vivo already 
noted the synergistic action of ductal stimuli. 
Application of secretin at a level observed in the 
postprandial state only produces modest HCO3

- 
and fluid output (28, 45). Application of CCK and 
stimulation of M1 and M3 receptors markedly 
augmented secretin-stimulated pancreatic fluid 
secretion, although alone CCK and muscarinic 
stimulation have minimal effect on ductal secretion 
(86, 167). The molecular mechanism of synergism 
was resolved with the discovery of regulation of 
ductal secretion by IRBIT which is discussed below. 
The cAMP and Ca2+ signaling pathways crosstalk 
on several additional levels to modulate the activity 
of each other (67, 121). cAMP/PKA phosphorylates 
IP3R2 to augment Ca2+ release from the ER (16). 
Ca2+ influx through the Orai1 channels activates 
the Ca2+-dependent adenylyl cyclase (AC) AC8 
(160). Ca2+ can also activate the CFTR-dependent 
Cl−/HCO3

− exchange activity in CAPAN-1 human 

pancreatic duct cells (108), which may involve 
activation by IRBIT.   

B. Regulation by IRBIT  

Activation of NBCe1-B, slc26a6, and CFTR  

IRBIT was isolated as a protein that interacts with 
the IP3 binding pocket of the receptors (IP3Rs) and 
it can be dissociated from the IP3Rs by IP3 (25). 
IRBIT competes with IP3 for binding to the IP3Rs 
(10) to inhibit Ca2+ release. In fact, the IP3Rs 
appear to function as IRBIT buffers to prevent 
IRBIT access to many transporters and targets 
regulated by IRBIT (87). The C-terminal region of 
IRBIT family proteins shows ~ 50% homology with 
the ubiquitous housekeeping enzyme S-adenosyl-
l-homocysteine hydrolase (AHCY), with IRBIT 
having additional N terminal sequence while it 
lacks the hydrolase activity (9). The main known 
domains of IRBIT are PP1 and calcineurin binding 
motif, a PEST domain, a coiled-coil domain, and a 
PDZ ligand at the end of C terminus (87, 153).  

IRBIT plays an important role in pancreatic ductal 
secretion by regulating multiple transporters and 
mediating the synergistic action of the cAMP/PKA 
and Ca2+ signaling pathways (Figure 2). 
Knockdown of IRBIT in ducts and knockout in mice 
modestly inhibit fully stimulated pancreatic duct 
fluid and HCO3

- secretion (165), and eliminates the 
physiological synergistic action of the cAMP/PKA 
and Ca2+ signaling pathways (122). IRBIT 
accumulates at the apical pole where IP3Rs are 
highly expressed, but it can be found all over the 
cell where IP3Rs are present (88). A search for 
IRBIT binding proteins identified NBCe1-B as a 
binding partner, where IRBIT binds to the N 
terminus autoinhibitory domain of NBCe1-B to 
activate it by removing the autoinhibition (143). 
Subsequent detailed studies, in particular with the 
pancreatic duct revealed that IRBIT at the apical 
pole potently activates the apical CFTR (163, 165), 
SLC26A6 (122), and NHE3 (49). At the basal side, 
IRBIT regulates NBCe1-B (143, 163, 165). IRBIT 
activates the transporters by multiple mechanisms. 
First, IRBIT recruits protein phosphatase 1 (PP1) 
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to the transporters to dephosphorylate serine 
residue 75 in NBCe1-B and yet to be identified 
residue in CFTR that are phosphorylated by the 
kinase SPAK. For these phosphorylations SPAK 
must be activated by phosphorylated by the two 
kinases WNK1 and/or WNK4 (138). IRBIT also 
recruits the phosphatase calcineurin to 
dephosphorylate serine residue 12 that is 
phosphorylated by CaMKII (153). This enhances 
the plasma membrane relocation of NBCe1-B, 
CFTR (163) and slc26a6 (122) from intracellular 
vesicular pools. At the plasma membrane, IRBIT 

directly interacts with the transporters to further 
increase their activity. Moreover, phosphorylation 
by SPAK and CaMKII and dephosphorylation by 
the respective phosphatases PP1 and calcineurin 
determines regulation of NBCe1-B, and likely other 
IRBIT-regulated transporters, by Cl-in (153). The 
mechanism by which IRBIT activates the other 
transporters is not known at this time beyond the 
need for the PDZ binding motif of IRBIT for 
assembling the IRBIT-NBCe1-B and IRBIT-CFTR 
complex (165). 

 

Figure 2.  A model for IRBIT associated pathway of pancreatic ductal fluid and HCO3- secretion. Key domains of IRBIT 
related to HCO3- secretion are illustrated at the top of the figure. In the resting state, IRBIT is bound to IP3Rs, and SPAK 
phosphorylates NBCe1-B, Slc26a6, and CFTR located at intracellular organelle. When the duct cells are stimulated, IP3 is 
released and bound to IP3Rs, while IRBIT is disengaged from IP3Rs. PP1 recruited to IRBIT dephosphorylates transporters 
located at the plasma membrane. IRBIT also binds to the autoinhibitory domain of NBCe1-B to activate it. Increased surface 
expression of the transporters also aids pancreatic ductal HCO3- secretion. Modified from (121). See text for details. 
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IRBIT and Synergism  

An important action of IRBIT is mediating the 
synergistic action of the cAMP/PKA and Ca2+ 
signaling pathways (122) (see Figure 2). 
Physiological stimulus intensity must be quite weak 
to prevent cell toxicity that occurs under strong 
stimulation of all signaling pathways. Indeed, at 
physiological stimulus intensity the secretory 
process is activated only by about 5-10% or less of 
maximal stimulation. Synergism between weakly 
stimulated signaling is used to generate the 
maximal response while avoiding cell toxicity and 
increasing fidelity. IRBIT mediates the synergism 
between the cAMP/PKA and Ca2+ signaling 
pathways by translocation between cellular 
compartments and transporters. At the resting 
state, IRBIT is sequestered by the high level of 
IP3Rs at the ductal ER apical pole and is not 
available for interaction with the transporters. The 
affinity of the IP3Rs for IRBIT and IP3 is regulated 
by PKA-mediated phosphorylation of specific 
IP3Rs serine residues. Phosphorylation of the 
serine residues increases the affinity for IP3 and at 
the same time decreases the affinity for IRBIT. Now, 
a small increase in IP3 evoked by weak stimulation 
of the Ca2+ signaling pathway is sufficient to 
dissociate IRBIT from the IP3Rs (122). The 
released IRBIT can bind to CFTR and slc26a6 first 
in intracellular vesicles to dephosphorylate them by 
the IRBIT-recruited PP1 and calcineurin and 
promote their translocation to the luminal 
membrane. At the luminal membrane, IRBIT 
activates the transporters and reduce their 
inhibition by Cl-in to initiate ductal fluid and HCO3

- 
secretion (122, 153). Of note, the synergistic action 
of the cAMP/PKA and Ca2+ signaling pathways is 
eliminated by the knockout of IRBIT (122), 
highlighting the key role of IRBIT in the synergistic 
action of the cAMP/PKA and Ca2+ signaling 
pathways, which is the physiological way that 
ductal fluid and HCO3

- secretion take place.           

C. Regulation by [Cl-]i 

WNK1 and dynamic regulation of CFTR HCO3
- 

permeability  

The WNK proteins consist of four members (WNK1 
– WNK4) with a conserved kinase domain that is 
noted for the unique position of the catalytic lysine 
residue (105). The discovery that mutations in 
WNK1 and WNK4 cause hypertension in humans 
has attracted much attention to these kinases 
function and regulation (161). The main function of 
the WNKs is the regulation of Na+, K+, Cl-, HCO3

-, 
and Ca2+ transporters in epithelia and brain (34, 54, 
55, 121). The WNKs act either by regulating 
surface expression of membrane transporters 
through modulation of their endocytosis or by 
phosphorylating the transporters and other target 
proteins directly or indirectly through affecting the 
effect of other kinases (55). Several functions of 
WNKs are mediated by phosphorylating and 
activating the downstream oxidative stress-
responsive kinase 1 (OSR1) and SPAK (26). 
WNK1, WNK3, WNK4, SPAK, and OSR1 are 
expressed in the pancreatic duct (119, 163) and 
participate in the regulation of HCO3

- transporters 
and channels (87). Accordingly, knockdown of 
WNK4 alone or a combined knockdown of WNK1, 
WNK3 and WNK4 increase pancreatic duct fluid 
secretion by removing a tonic negative effect on 
ductal HCO3

- transporters (163). However, the role 
of the WNKs, in particular WNK1, changes at the 
terminal portion on the duct when [Cl-]i is reduced 
to below 10 mM. WNK1 and the other WNKs, binds 
[Cl-]i and their activity is regulated by [Cl-]i (125, 141, 
151).  

The role of WNK1 in pancreatic HCO3
- secretion is 

illustrated in the left portion of Figure 3. Osmotic 
stress or low [Cl−]i activates WNK1 (125). Notably, 
activation of WNK1 by low [Cl−]i greatly increases 
the HCO3

- permeability of CFTR (66, 119). During 
active pancreatic HCO3

- secretion, lower Cl- 
concentration in the pancreatic juice progressively 
reduces Cl- absorption. Because of the low 
basolateral and high luminal Cl- permeability (58, 
119), [Cl−]i rapidly decreases in response to the 
reduction in luminal duct Cl- concentration. At a 
membrane potential of -60 mV, [Cl−]i is less than 
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1/10 of luminal Cl- concentration. Indeed, ductal 
[Cl−]i was estimated to be about 5 mM during 

cAMP-induced active secretion (58, 119).  

Figure 3.  A model depicting WNK1-mediated regulation of CFTR in pancreatic ductal function. During active pancreatic 
HCO3- secretion, Cl- concentration in the pancreatic juice is progressively reduced due to Cl-/HCO3- exchange activities at the 
apical membrane of duct cells. Because the basolateral membrane of duct cells has poor Cl- permeability but the apical Cl- 
permeability is very high due to activation of CFTR, [Cl-]i rapidly decreases in response to the reduction in luminal Cl- 
concentration. Activation of WNK1 by low [Cl-]i increases the PHCO3/PCl of CFTR to over 1.0, which greatly augments HCO3- 
flux through the CFTR pore. Simultaneously, WNK1/SPAK pathway inhibits Slc26a6 to prevent HCO3- reabsorption. This 
mechanism enables an increase to as much as 140 mM HCO3- in pancreatic juice. See text for details. Modified from (87). 

WNK1 modulates the anion selectivity of CFTR by 
changing its pore size (66). Stimulation by WNK1 
increases CFTR pore size from 4.8 Å to 5.3 Å, 
which facilitates the passage of HCO3

-. (4.3 Å, 
diameter), more than the smaller anion, Cl- (3.7 Å, 

diameter). Changes in pore size affect the energy 
barrier of ion dehydration by altering the electric 
permittivity of the water-filled cavity in the pore. 
Dielectric constant (relative permittivity, ε) is a unit 
of electric permittivity, and the dielectric constant of 
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water (εw) is approximately 80 at room temperature. 
Water molecules in confined geometry like ion 
channels exhibit a space-dependent reduction in 
the pore water εw down to 20, due to the restriction 
of the translational and rotational mobility of water 
molecules (2). Pore dilation relieves this restriction 
of water molecule movement and increases εw, 
which eventually leads to an increase in the overall 
ε of the anion channel pore. Indeed, the pore 
dilation induced by WNK1 activation increased the 
ε of the CFTR pore from 16 to 43 (66). In general, 
ions pass through the channel after dehydration (at 
least partial dehydration). Asymmetrically charged 
ions, such as HCO3

-, show lower permeability than 
the symmetrically charged ions, such as Cl-, due to 

the high hydration/dehydration energy barrier. The 
increase in anion channel pore ε greatly alleviates 
the dehydration penalty of the asymmetrically 
charged HCO3

- and increases PHCO3/PCl (Figure 4). 
In an initial study, WNK-OSR1 or WNK1-SPAK 
complex was suggested to increase the CFTR 
PHCO3/PCl (119). However subsequent study 
showed that WNK1 alone was sufficient to increase 
CFTR PHCO3/PCl (70). Molecular dissection of the 
WNK1 domains revealed that the WNK1 kinase 
domain is responsible for CFTR PHCO3/PCl 
selectivity by direct association with CFTR, while 
the surrounding N-terminal regions mediate the 
[Cl−]i-sensitivity of WNK1 (70).

Figure 4.  WNK1 modulates the anion selectivity of CFTR by changing the pore size. Stimulation by WNK1 increases the pore 
size of CFTR from 4.8 Å to 5.3 Å and the pore dilation increases the dielectric constant (ε) of the CFTR pore from 16 to 43. The 
increase in pore size facilitates the passage of the larger anion, HCO3- (4.3 Å, diameter), more than the smaller anion, Cl- (3.7 
Å, diameter) by reducing the energy barriers of size-exclusion. More importantly, the dielectric constant increase enhances the 
HCO3− permeability of CFTR by reducing energy barriers required for ion dehydration of HCO3− (66). See text for details. 

Although the precise WNK1-binding sites on the 
CFTR are not fully defined, examining pancreatitis-
causing CFTR mutations revealed that R74 and 
R75 located in the first elbow helix region of the 
CFTR, are involved in the WNK1-CFTR 

association [39]. A computational protein-protein 
docking analysis using the Protein Data Bank-
deposited structures of human CFTR and the 
WNK1 kinase domain showed that WNK1 S231–
T234 and I384–E388 can potentially bind to an 
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intracellular CFTR region near R74–R75 in the 
elbow helix 1 (Figure 5). The handle-like elbow 
helix 1 is located immediately ahead of 
transmembrane domain 1 and contacts a 
proximally located lasso motif that has been 
suggested to play a role in CFTR gating and 
regulation of the R domain (93). Therefore, it 
appears that the binding of WNK1 kinase domain 
to the elbow helix 1 region of CFTR affects the 

CFTR open structure to facilitate HCO3
− 

permeation (142). Notably, WNK1 not only 
increases PHCO3/PCl of CFTR HCO3

− channel but 
the HCO3

− conductance (GHCO3) and Po in single 
channel recording (70). Increase in CFTR GHCO3 
may also significantly contribute to augmenting 
HCO3

− flux across the apical membrane of 
pancreatic duct cells.

 

 

Figure 5. Structural model for the molecular complex between hCFTR and the WNK1 kinase domain in the presence of a lipid 
bilayer. The R74 (yellow balls) and R75 (orange balls) residues from hCFTR participate in the binding interface. The figure 
shows the hCFTR-WNK1 complex predicted by ClusPro, after equilibration in the MD simulation system where it is embedded 
into the membrane lipids (lines with their phosphorus atoms shown as purple spheres) and solvated by 0.1 M NaCl solution. The 
snapshot was taken after 100 ns MD simulations. The inset figure shows a close-up view of interfacial interactions. WNK1 
residues at the interface include S231, K233, T234, T386, and E388. Modified from (70). 

Interestingly, activated WNK1 while increasing 
CFTR PHCO3/PCl and GHCO3, does not lose the 
inhibitory effect on SLC26A6 and SLC26A3 (119). 

When the luminal HCO3
- concentration is greater 

than 140 mM, continuous activation of apical Cl-
/HCO3

- exchange would reverse to absorb HCO3
- 
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from the lumen. This is more of a problem for the 
2Cl-/1HCO3

- exchange by slc26a3 and less, if at all, 
for the 1Cl-/2HCO3

- slc26a6, especially at 
membrane potential of -60 mV across the luminal 
membrane. However, inhibition of the apical Cl-
/HCO3

- exchangers is required to prevent the 
reverse mode of Cl-/HCO3

- exchange activity if 
slc26a3 dominates the exchange when ductal [Cl-]i 
is below 10 mM and ultimately achieves HCO3

- 
concentration above 140 mM in pancreatic juice 
(146, 148).  

Cl-in as a signaling ion, the case for NBCe1-B  

[Cl-]i emerged as a signaling ion by regulating 
several ion transporters and channels. A 
comprehensive review of Cl- as a bona fide 
signaling ion can be found in (97). Here we discuss 
the signaling function of Cl-in with respect to ductal 
function. By virtue of regulating the function of the 
WNK kinases [Cl-]i may affect other transporters 
regulated by these kinases. A significant discovery 
is that [Cl-]i profoundly regulates the activity of 
several Na+-HCO3

- cotransporters (NBCs) at the 
[Cl-]i physiological range (138, 153). [Cl-]i regulates 
the activity of all NBCs tested NBCe1-B, NBCe1-C, 
and NBCe1-A. The IRBIT-independent activity of 
NBCe1-B is inhibited by [Cl-]i between 60-140 mM 
that is outside the physiological range and may 
function to inhibit NBCe1-B activity under 
pathological conditions. Most notably, when 
activated by IRBIT, NBCe1-B activity is reduced by 
[Cl-]i in the range of 5-20 mM, where at 20 mM [Cl-]i, 
NBCe1-B activity is reduced to the basal, IRBIT-
independent level. Molecular analysis identified 
two Cl- interacting motifs at the N terminus of 
NBCe1-B that mediate high and low affinity 
inhibition by [Cl-]i. Regulation of NBCe1-B is 
mediated by sites that contain the GXXXP motif. 
The first site mediates the high [Cl-]i affinity (5-20 
mM) regulation of NBCe1-B and the second site 
mediates the low [Cl-]i affinity (60-140 mM) 
regulation of NBCe1-B (138). NBCe2-C activity is 
not regulated by IRBIT and in this case regulation 
of NBCe1-C is mediated by a single site containing 
the GXXXP motif and takes place at [Cl-]i between 

10-30 mM. Regulation of NBCe1-A by [Cl-]i is 
mediated by a cryptic Cl- interacting site containing 
the GXXXP motif. The cryptic NBCe1-A [Cl-]i 
interacting sites was unmasked by deletion of 
residues 29-41. Further analysis showed that 
interaction of Cl-in with the GXXXP sites is 
regulated by phosphorylation/dephosphorylation 
events with SPAK and PP1 acting on serine 65 to 
affect Cl- sensing by the 32GXXXP36 site, while 
CaMKII and calcineurin acting on serine 12 to 
affect Cl- sensing by the 194GXXXP198 site (153). 
Other phosphorylation sites affecting NBCe1-B 
activity are Ser232, Ser233, and Ser235 with the 
phosphorylation status of Ser232, Ser233, and 
Ser235 is regulated by IRBIT to determine whether 
NBCe1 transporters are in active or inactive 
conformations (153). 

Hence, cells have a [Cl-]i sensing mechanism that 
plays an important role in the regulation of Na+ and 
HCO3

- transporters that mediate the critical step of 
HCO3

- influx in the process of ductal fluid and 
HCO3

- secretion. At [Cl-]i of up to 20 mM, CFTR 
functions mostly as a Cl- channel and slc26a6 
mediates most ductal HCO3

- secretion. As [Cl-]i is 
reduced below 20 mM and additional HCO3

- 
secretion takes place in the face of unfavorable Cl- 
and HCO3

- gradients across the apical membrane, 
there is an increased demand for HCO3

- entry 
across the basolateral membrane. Pancreatic duct 
cells achieve this by [Cl-]i-mediated regulation of 
NBCe1-B and CFTR, at which NBCe1-B activity 
and CFTR HCO3

- permeability gradually increase 
as [Cl-]i is reduced towards 5 mM.     

D. A Model for Pancreatic HCO3- Secretion 

Electrogenic HCO3
− transporters can generate 

higher gradients of HCO3
− than electroneutral 

transporters when the electro-repulsive force 
generated by the negative membrane potential is 
coupled to the basolateral uptake of HCO3

- by 
NBCe1-B and the luminal efflux of HCO3

− through 
SLC26A6 and CFTR. The electrogenic SLC26A6 
exchanger with the stoichiometry of 1Cl-: 2HCO3

−, 
can achieve luminal HCO3

− concentration of up to 
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about 120 mM at apical membrane potential of -60 
mV (148). To drive luminal HCO3

- concentration to 
140 mM, the physiologic HCO3

- concentrations in 
pancreatic juice, another mechanism is needed 
(148). Such a mechanism should be Cl- 
independent, since significant fraction of 
pancreatic HCO3

− secretion is retained in the 
absence of luminal Cl- (59, 61). The WNK1 
activated CFTR satisfy these requirements. At 
HCO3

-
in in stimulated duct cells above 25 mM and 

membrane potential of -60 mV, CFTR mediates 
HCO3

- efflux even at luminal HCO3
- concentrations 

of above 140 mM. Transport by NBCe1-B and 
slc26a6 results in osmotic transport of HCO3

- that 
is essential for the transcellular water transport by 
the duct. The transcellular basal to luminal 
electrogenic HCO3

- transport by both slc26a6 and 
CFTR generates a lumen-negative electrical 
potential that results in paracellular Na+ secretion. 
Water flows down the osmotic gradient generated 
by the Na+ and HCO3

- fluxes via paracellular and 
transcellular (aquaporins) pathways (Figure 3). 
Overall, these processes generate an efficient 
mechanism for HCO3

-–driven ductal fluid secretion 
to generate the volume and HCO3

- content of the 
pancreatic juice. 

V. Conclusions 

The mechanism by which the human pancreatic 
duct secretes nearly isotonic HCO3

- solution has 
long been an enigmatic question for both 
physiologists and clinicians (86, 148). When 
Bayliss and Starling first noticed that the exocrine 
pancreas secretes alkaline fluid, they assumed 
that carbonate is responsible for the strong 
alkalinity of the pancreatic juice (13). Later, with 
better understanding of the carbonate/HCO3

-/CO2 
buffer system (51), it became clear that the 
exocrine pancreas secretes fluid in which the 
dominant anion is HCO3

-, and HCO3
− secretion is 

coupled to fluid secretion (19, 28, 46). Current 

understanding indicates that activation of three key 
transporters, the basolateral NBCe1-B (and likely 
AE2), and the luminal SLC26A6 and CFTR, and 
their synergistic regulation by the cAMP and Ca2+ 
signaling pathways through IRBIT and WNK1 
perform vectorial pancreatic HCO3

− secretion that 
drives fluid secretion. NBCe1-B, with a 1 Na+/2 
HCO3

- stoichiometry, is the main HCO3
- 

concentrating transporter in the basolateral 
membrane, and can achieve the necessary HCO3

- 
influx (1, 60, 172). Basolateral AE2 activity is also 
required to support ductal HCO3

- fluid and HCO3
- 

secretion probably by controlling cytoplasmic and 
near membrane pHin, although the exact role of 
AE2 is not known at present. The electrogenic 
SLC26A6, with a 1 Cl-/2 HCO3

- stoichiometry is the 
major apical Cl-/HCO3

- exchanger, which mediates 
most HCO3

- efflux in the early step of pancreatic 
HCO3

− secretion (76, 94). Activated WNK1 
increases HCO3

- permeability and conductance of 
CFTR, allowing further apical HCO3

- efflux and 
setting the pancreatic juice HCO3

- concentrations 
above 140 mM (119). Ductal fluid and HCO3

- 
secretion is essential for the function of the 
pancreas and is severely altered in all form of 
pancreatitis (50, 168). Our understanding of the 
mechanism of pancreatic fluid and HCO3

- secretion 
will continue to improve as our knowledge of 
existing pathways increases and new mechanisms 
are identified and delineated, to provide a better 
scientific basis for therapeutic approaches to treat 
diseases like cystic fibrosis and acute and chronic 
pancreatitis.  
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