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1. General Structure and Function 

Secretin and its receptor hold special places in 

history, with secretin representing the first 

“hormone”, giving rise to the field of endocrinology 

when W. M. Bayliss and E. H. Starling recognized 

it as a blood-borne non-neural mediator of 

pancreatic exocrine secretion in 1902 (1), and 

with the secretin receptor cloned by T. Ishihara et 

al. in 1991 (2), representing the first family B G 

protein-coupled receptor and giving rise to this 

new and important receptor family.    

The secretin receptor is a guanine nucleotide-

binding protein (G protein)-coupled receptor  

(GPCR) that binds to and is activated by the 

peptide hormone, secretin.  This receptor was the 

first member of the B family of GPCRs (3, 4), 

which also includes receptors for vasoactive 

intestinal polypeptide (VIP), pituitary adenylate 

cyclase-activating peptide (PACAP), glucagon, 

glucagon-like peptide (GLP), glucose-dependent 

insulinotropic polypeptide (GIP), calcitonin, 

calcitonin-like peptide, parathyroid hormone 

(PTH), corticotrophin-releasing factor (CRF), and 

growth hormone releasing hormone (GHRH) (3, 

4). It is notable that these receptors lack the 

classical signature sequences found in most 

members of the much larger A family of GPCRs 

(5, 6).  The most typical features of B family 

GPCRs includes a long amino-terminal tail region 

with six highly conserved cysteine residues that 

contribute to three structurally and functionally 

important intra-domain disulfide bonds, and seven 

hydrophobic transmembrane segments having 

residue conservation quite distinct from other 

family GPCRs (Fig. 1, left panel) (5-7).   

In evaluation of these sequences, it has been 

proposed that the helical bundle of family B 

GPCRs is structurally distinct from that of family A 

GPCRs (5-7), even though it still likely includes a 

heptahelical bundle conformation and is known to 

couple with the same group of heterotrimeric G 

proteins.  It is noteworthy that family B GPCRs 

typically couple with both Gs and Gq, in contrast 

to family A GPCRs that often couple with only a 

single dominant G protein.  The extracellular 

amino-terminal tail domains of several members 

of this receptor family have recently been 

structurally characterized, either by NMR or 

crystallography, to exhibit a highly conserved core 

that includes two anti-parallel β-sheets, three 

disulfide bonds, and variable amino-terminal α-

helix and multiple loop regions (8-17).  The 

structure also provides a conserved hydrophobic 

peptide-binding cleft above the stable core and 

between the helix and loop regions.   

Like many GPCRs, the secretin receptor is 

glycosylated on ectodomains, predominantly 

within the amino-terminal tail, and also on the 
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second extracellular loop (18).  These all 

represent sites of N-linked glycosylation of 

asparagine residues.  Site-directed mutagenesis 

has demonstrated potential functional importance 

of glycosylation on Asn72 and Asn291 of the human 

secretin receptor (Fig 1 shows Asn78 and Asn263 

of the rat sequence), representing the first of three 

glycosylation sites within the amino-terminal tail 

and the glycosylation site within the second 

extracellular loop, although selective, single 

mutation of the other sites had no demonstrable 

functional impact (18).  Generally, the 

glycosylation sites of membrane receptors are 

important for proper folding during biosynthesis, 

ensuring normal trafficking, and for protecting the 

receptor from proteolytic degradation.   

Desensitization of GPCRs often can be induced 

both by biochemical modifications such as 

phosphorylation and by cellular mechanisms such 

as internalization.  The secretin receptor utilizes 

both of these.  Like many receptors that activate 

intracellular kinases, phosphorylation of the 

secretin receptor is utilized as a biochemical 

mechanism for feedback regulation involved in 

desensitization.  Direct evidence for agonist-

stimulated phosphorylation of the secretin 

receptor was first demonstrated by Ozcelebi et al. 

(19).  That work established the phosphorylation 

of threonine and serine residues within the 

receptor carboxyl-terminal tail region.  The 

kinases involved in phosphorylation of the 

secretin receptor were found to represent 

predominantly G protein-coupled receptor 

kinases, with minor action by both protein kinase 

A and protein kinase C (20).  Secretin receptor 

phosphorylation has been shown to disrupt G 

protein coupling (21), but not to be necessary for 

agonist-induced receptor internalization (21).  The 

latter certainly occurs, and represents a major 

mechanism for desensitization of this receptor.     

In recent years, it has been recognized that 

certain GPCRs can associate with themselves 

and with structurally related GPCRs to form 

oligomeric or dimeric complexes (22).  While most 

of these studies have been directed toward family 

C or family A GPCRs, recent work has shown that 

it is relevant to family B GPCRs as well (22).  The 

evidence is best for family C GPCRs, where 

dimeric structures typically have profound effects 

on receptor function and specificity, and where 

crystal structures of covalently-bonded dimeric 

complexes of ectodomains have been reported  

(23).  In family A GPCRs, there have been no 

consistent observations of which receptors might 

associate with themselves or other GPCRs, of 

functional effects of oligomerization, or of the 

impact of ligand binding on receptor 

oligomerization (23).  The secretin receptor is 

among the best studied family B GPCR in regard 

to its oligomerization.  It is constitutively present 

within homo-dimeric complexes determined by the 

lipid-exposed face of the fourth transmembrane 

segment (24-26).  This structure is critically 

important for achieving the high affinity G protein-

coupled state of this receptor, with non-dimerizing 

mutants coupling less efficiently, binding secretin 

with lower affinity, and having less potent effects 

of secretin to stimulate cAMP (24-26).  Of note, 

only the dimeric state of this receptor exhibits 

negative cooperativity (24), another protective 

feature of some receptor systems.  The 

structurally specific nature of secretin receptor 

homo-dimers appears to be consistent throughout 

this receptor family (27).  This receptor is also 

able to form hetero-dimers with other family B 

GPCRs (28). 

There is also a single report to demonstrate the 

ability of the single transmembrane Receptor 

Activity-Modifying Protein-3 (RAMP-3) to 

associate with the secretin receptor during its 

biosynthesis (29).  Of note, since the secretin 

receptor is able to traffick to the cell surface 

independent of its association with RAMPs, it is 

difficult to identify a specific effect of this 

bimolecular association, unlike those members of 

the B family of GPCRs that cannot get to the cell 

surface without RAMPs, such as the calcitonin 

receptor-like receptor (30).  Indeed, no specific 
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functional effect has yet been demonstrated for 

RAMP-3 association with the secretin receptor 

(29).  

Like secretin, all of the natural ligands of family B 

GPCRs, represent moderately long peptide 

hormones having diffuse pharmacophoric 

domains (3, 4).  These all have the propensity to 

form helical structures, particularly in their 

carboxyl-terminal ends, a region of these peptides 

now known to bind to the hydrophobic cleft within 

the amino terminus of their receptors.  This 

binding directs the amino-terminal region of these 

ligands toward the core helical bundle domain of 

their receptors.  This portion of secretin and other 

family B GPCR ligands is responsible for its 

biological activity, with amino-terminally truncated 

forms of these ligands acting as antagonists (31-

33).  The right panel of Figure 1 illustrates the 

current working model of secretin occupation of its 

binding site within the secretin receptor.   

The classical effects of secretin are the 

stimulation of the secretion of bicarbonate, water, 

and electrolytes from the pancreatic ductular 

system, as well as the biliary ducts (34, 35).  

These effects are largely stimulated by secretin 

released from S cells in the proximal intestine in 

response to intraluminal acid and fatty acids, thus 

playing a hormonal regulatory role and a classical 

feedback loop (35).  Subsequently, it has become 

clear that this receptor is also expressed in many 

other tissues, and that it has pleiotrophic roles 

(36).  Of particular interest, some of these roles 

are mediated by neuronal secretin, thus acting as 

a neurotransmitter (37).  Many of the secretin 

receptors in brain and kidney play important roles 

related to fluid homeostasis (38).  Prominent 

expression in brain has been described in 

cerebellum, with intermediate levels of expression 

in cortex, thalamus, striatum, hippocampus and 

hypothalamus, and low levels of expression in 

midbrain, medulla, and pons (36, 39).  Secretin 

has been described to stimulate drinking behavior 

via central nervous system actions that include 

release of vasopressin (38, 40).  Secretin 

receptors are expressed on essentially all cells 

within the kidney, with this hormone described to 

stimulate renal blood flow and glomerular filtration 

rate, as well as tubular water reabsorption, and to 

have effects on translocation of aquaporin (38, 

40).  Secretin has been described to have both 

diuretic and anti-diuretic effects, dependent on 

dose and route of administration (41).  Secretin 

receptors are also expressed on gastrointestinal 

smooth muscle, neurons, and certain mucosal 

cells, heart, and lung (39).   

Like most family B GPCRs, the secretin receptor 

is known to couple to both Gs and Gq, with the 

cAMP response to stimulation most prominent 

and sensitive, while the intracellular calcium 

responses are only observed with high 

concentrations of hormone (42).  The 

determinants for G protein coupling have been 

best studied for family A GPCRs, where distinct 

motifs have been present in the juxtamembranous 

regions of the second and third intracellular loops 

and carboxyl-terminal tail (43, 44). Some work 

has been reported for family B GPCRs (45-47), 

but the same motifs in the same positions appear 

to be absent.  It is interesting that the 

determinants for coupling with these two G 

proteins are apparently both shared and distinct, 

with mutations able to disrupt both Gs and Gq 

coupling, as well as more selective disruption of 

some receptor mutations (47).  Like many 

GPCRs, full signaling responses are recorded 

with less than 20 percent of receptors occupied 

(48, 49).  There are typically spare receptors 

present on physiologic targets of this hormone, 

but there have been no detrimental effects 

observed for stimulation with supramaximal 

concentrations of secretin.  These signaling 

pathways have prominent effects on cell surface 

transporters involved in fluid and electrolyte 

transport (38).  Stimulation of this receptor has 

also been observed to affect translocation and 

activation of various aquaporins in different 

tissues, consistent with its important roles in fluid 

homeostasis (38, 40).   



 

4 

 

Figure 1.  Shown are a two-dimensional schematic diagram of the secretin receptor and a three-dimensional 

molecular model of the secretin occupied receptor.  In the left panel, the primary amino acid sequence of the rat 

secretin receptor is illustrated along with the proposed topology with seven transmembrane segments, a 

glycosylated and disulfide-bonded extracellular amino-terminal tail, extracellular and intracellular loops, and an 

intracellular carboxyl-terminal tail.  There is also a disulfide bond linking cysteines within the first and second 

extracellular loops, and another site of glycosylation in the second extrcellular loop. In the right panel, the secretin 

peptide ligand is shown colored blue to red from the amino terminus, directed into the intramembranous helical 

bundle region, to the carboxyl terminus, occupying the peptide-binding cleft within the receptor amino terminus. 

The receptor is illustrated in gold, with the amino-terminal domain above the transmembrane helical bundle. The 

loop regions reflect the possible variability in that part of the current model in the absence of additional 

constraints. Right panel derived from a figure published in Journal of Biological Chemistry 285:9919-9931, 2010 

(75), with permission of the American Society for Biochemistry and Molecular Biology. 

While secretin receptors have been reported to be 

present on various neoplasms, including ductular 

carcinomas of the pancreas and selected islet cell 

carcinomas (50), it is not clear that the integrity of 

the receptor or the signaling responses to secretin 

are normal in those cells.  In fact, the splicing of 

the secretin receptor mRNA has been reported to 

be abnormal in some of these tumors (51-55).  A 

series of secretin receptor spliceoforms have 

been described (50).  This includes the skipping 

of exon 4, exons 3 and 4, exons 2 and 3, and 

exon 9.  The exon 3 skipping first observed in a 

gastrin-secreting islet cell tumor, and later in 

pancreatic ductal carcinomas and 

cholangiocarcinomas, has been reported to have 

no intrinsic activity and even to exhibit dominant 

negative activity to inhibit the function of wild type 

receptor (54).  This has the possible effect to 

reduce a growth inhibitor, thus stimulating 

neoplastic growth (50). 

2. Specific Function in the Pancreas 

The pancreatic effects of secretin are, indeed, the 

most extensively studied and best described (56). 

This hormone was first recognized based on its 

ability to stimulate pancreatic exocrine secretion.  

Secretin receptors are present on pancreatic 

ductular cells, acinar cells, and even some cells 

within the islets (51, 57).  They are also present 
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on a number of pre-neoplastic and neoplastic 

conditions, including panin lesions (pancreatic 

intraductal neoplasia), ductal adenocarcinomas, 

intraductal papillary mucinous tumor syndrome, 

serous cystic tumors, and some islet cell tumors 

(51).     

The major pancreatic function of secretin is to 

stimulate the secretion of bicarbonate, water, and 

electrolytes (34, 35, 56, 58, 59).  This is mediated 

by receptors present on the basolateral surface of 

ductular cells, where stimulation results in 

activation of cAMP and protein kinase A.  This, in 

turn, activates cystic fibrosis transmembrane 

regulator to affect chloride flux, resulting in 

membrane depolarization.  This increases the 

force of the electrogenic sodium-bicarbonate 

cotransporter that increases cytosolic bicarbonate 

and then secretes it at the apical membrane 

through the chloride/bicarbonate exchanger.  As 

noted above, this effect is controlled by secretin 

secreted from intestinal S cells that are stimulated 

by intraluminal acidic chyme.  The result of this 

alkaline secretion then neutralizes the acidic 

chyme, helping to establish an optimal milieu for 

the action of pancreatic and intestinal enzymes 

involved in the digestion of protein, lipid, and 

carbohydrate and their subsequent absorption.  

Of note, secretin also has a trophic effect on 

ductal cells, with biliary ductular proliferation 

observed upon stimulation with high 

concentrations of secretin; this is not seen with 

secretin administration to secretin receptor 

knockout mice (60).  Whether a similar effect 

occurs in the pancreas is unknown.  

At the acinar cell, secretin stimulation can result in 

a modest secretion of zymogen content, including 

amylase, in some species (61).  It is noteworthy 

that this effect is weak in most species, with the 

rat acinar cell typical of this (48), and with the 

guinea pig acinar cell exhibiting a substantially 

greater response (49). It has also been described 

that secretin can potentiate the exocrine secretory 

effect of cholecystokinin (62).  Secretin has also 

been described to modulate insulin and glucagon 

release from B and A cells within the islet (63-65). 

3. Tools to Study the Secretin 

Receptor 

a. Molecular constructs 

Mouse, rat, and human wild type secretin receptor 

cDNA clones in pDONR vector can be purchased 

from GeneCopoeia (www.genecopoeia.com). 

Human secretin receptor cDNA clone in 

pcDNA3.1 vector is available from UMR cDNA 

Resource Center, Missouri University of Science 

and Technology (www.cdna.org). Our laboratory 

uses rat and human secretin receptor cDNA 

clones in pcDNA 3.0. Additionally, a human 

secretin receptor splice variant missing exon 3 in 

pcDNA3.0 (54) and another variant missing both 

exon 3 and 4 in pBluescript KS+ vector (55) have 

been prepared in our laboratory.  

b. Antibodies 

Polyclonal anti-secretin receptor antibodies raised 

against the full-length receptor or its peptide 

fragments are commercially available from a 

number of vendors, including Abbiotec (250854), 

Abcam (ab85565 and ab58654), Abnova Corp. 

(H00006344-B01 and PAB5567), Acris Antibodies 

GmbH (AP08768PU-N), Atlas Antibodies 

(HPA007269),  GenWay Biotech, Inc. (18-783-

77147-1 ml), Insight Genomics (RPA47872), 

LifeSapn BioSciences (LS-B2374-50), Novus 

Biologicals (H00006344-B01), Raybiotech, Inc. 

(129-10604), R&D Systems (AF6387), Santa Cruz 

Biotechnology, Inc. (sc-26633 and sc-26632), 

Sigma –Aldrich (S8448 and HPA007269). A 

monoclonal antibody clone is available from 

Abnova Corp. and Novus Biologicals (the same 

catalogue number for both: H00006344-M01).  

However, we have not tested any of these in our 

laboratory. We were able to insert a 

hemagglutinin (HA) tag in position 37 of the 

mature secretin receptor (66) and have used anti-

HA antibody for immunostaining and Western blot 

studies. Dr. B. K. Chow used an antibody raised 

http://www.cdna.org/
http://www.rndsystems.com/pdf/AF6387.pdf
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against a mouse secretin receptor fragment for 

immunofluorescence staining in his laboratory 

(40). Additionally, two monoclonal antibodies 

directed against a secretin receptor splice variant 

missing both exons 3 and 4 have been generated 

in our laboratory (55). 

c. Transgenic mice 

Secretin receptor knockout mice (SCTR-/-) have 

been developed in the laboratories of Dr. B. K. 

Chow (67) and Dr. I. Nishijima (68). These SCTR-

/- mice are described to be overtly normal and to 

be normally fertile.  However, upon focused 

evaluation, they have altered water reabsorption 

in the renal tubules due to reduced expression of 

urine concentration-regulating proteins, aquaporin 

2 and 4, in the kidney (67).  They also have 

impaired synaptic plasticity in the hippocampus 

and slightly fewer dendritic spines in the CA1 

hippocampal pyramidal cells, as well as exhibiting 

abnormal cognitive and social behaviors (68).   

d. Activity Binding 

Affinity of the secretin receptor is determined by 

radioligand competition binding assay using a 

secretin radioligand and membranes prepared 

from cells expressing the secretin receptor (69). 

Currently, there is not a commercial source of 

radiolabeled secretin for such assays.  Oxidative 

labeling of natural secretin has been described, 

using strong oxidation for an extended time to 

incorporate the radioiodine into the histidine in 

position 1 (70).  However, this residue is critical 

for receptor binding and this radiolabel is not 

useful for receptor binding.  Similarly, Bolton-

Hunter reagent has been used to label the amino 

terminus of secretin (71) with the same negative 

effect on receptor binding.  A simple oxidative 

radioiodination method is applicable to an 

analogue of secretin incorporating a tyrosine into 

position ten (72).  This technique is well described 

in that paper (72).   

Extensive photoaffinity labeling of the secretin 

receptor has also been performed (73-78).  Sites 

of covalent attachment throughout the diffuse 

pharmacophore have been utilized, with many of 

these identifying residues within the receptor 

amino-terminal peptide-binding cleft (73-75, 78), 

and with a few sites at the amino terminus of the 

secretin ligand labeling the receptor core helical 

budndle domain (76, 77).  Techniques for 

photoaffinity labeling are reviewed in The 

Pancreapedia Research Tools page by Dong and 

Miller.   

Ligand binding induces conformational changes in 

the receptor, leading to coupling preferentially to 

Gs to activate adenylate cyclase and to then 

increase intracellular cAMP. Therefore, the 

biological activity of the secretin receptor is 

determined by examining cAMP accumulation in 

cells expressing this receptor in response to 

ligand stimulation (75).  Any of the commercially 

available cAMP measurement kits are useful in 

this assay.   
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