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1. ERK Belongs to the MAPK Family 

The Extracellular Signal-Regulated Kinase 

(ERK) pathway is the best understood of the 

Mitogen Activated Protein Kinase (MAPK) 

cascades (29, 40).  The pathways are named 

for the central kinase that affects cell function, 

ERK, JNK, p38 MAPK and ERK5.  These 

MAPKs are synthesized by cytoplasmic 

ribosomes but can migrate into the nucleus 

when activated.  Each MAPK pathway 

consists of a least three kinase components 

generically termed MAP3K, MAP2K and 

MAPK which sequentially activate the 

downstream component.  For the ERK 

pathway these kinases are Raf, MEK and 

ERK (Figure 1).  The ERK pathway is 

activated by growth factors, mitogens, 

hormones and some neurotransmitters which 

bind to tyrosine kinase and G protein coupled 

receptors.  The JNK and p38 MAPK pathways 

are most often activated by cytokines and cell 

stress. At many levels of the three pathways 

there are multiple forms such as ERK1 and 

ERK2 (ERK1/2) and JNK1/2/3 (40).  These 

multiple species are more closely related and 

in some cases have the same actions.  For 

the ERK pathway Human ERK1 and ERK2 

are 84% identical and all known stimuli 

activate both forms (3).  By contrast, the p38 

Map Kinase has four forms (α, β, γ, δ) which 

may have different regulation and actions.  

The MAPK pathways are often organized by 

scaffolding proteins (28, 42) For ERK the best 

studied scaffold is KSR1 (Kinase Suppressor 

of Ras-1) which binds all three members of 

the ERK kinase cascade. For JNK the 

cascade may be organized by the binding 

protein JIP-1. MAPK cascade components 

are all inactivated by phosphatases including 

pSer/Thr phosphatases such as pp2A, Tyr 

phosphatases or in the case of the MAPKs 

themselves by dual specificity phosphatases 

or DUSPS that dephosphorylate both Ser/Thr 

and Tyr (23, 26, 40).  There are ten 

catalytically active DUSPS arranged in three 

families by their nuclear or cytosolic 

localization. 

 

The MAPK cascades all have multiple actions 

in both the nucleus and cytosol.  In the 

nucleus, ERK and its downstream effectors 

such as p90 Ribosomal S6 Kinase (RSK) 

phosphorylate ternary complex factors such 

as ELK-1 and thereby stimulate transcription 

of early response genes such as Fos and 

Egr1 and are important in initiating 

mitogenesis (43, 54).  In the cytoplasm, ERK 

and another downstream kinase, MAPK-

interacting protein kinase (MNK-1) 

phosphorylate specific translational factors 

including eIF4E and eIF4G as well as cPLA2 



2 
 

(cytoplasmic phospholipase A2) ERK also 

localizes to other organelles including 

endosomes, caveolae, Golgi and 

cytoskeleton (53).   

 

This review will first consider what is known 

about activation of ERK1/2 in pancreatic 

acinar cells and then cover what is known 

regarding the actions of ERK in this cell. 

 

2. Activation of ERK pathway in 

Pancreatic Acinar Cells (Figure 1) 

ERK activation is usually monitored by 

following the dual phosphorylation of the Thr 

and Tyr residues in the Thr-Glu-Tyr activation 

sequence brought about by MEK as there are 

a number of good phosphospecific antibodies 

directed at this epitope. It can also be shown 

by phosphorylation of myelin basic protein 

either in a test tube or by an in gel technique 

Figure 1.  Pancreatic Acinar Cell ERK activation. 
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following gel electrophoresis and 

renaturization.  Both Western blots and the in 

gel kinase procedure reveal the two forms of 

ERK at approximately 44 and 42 kDa; in fact, 

the molecules were originally referred to as 

p42 and p44 MAPK with p42 being what is 

now referred to as ERK2 and p44 now being 

ERK1.  Using isolated rat or mouse 

pancreatic acini in vitro, ERK1/2 is activated 

by CCK, bombesin, substance P, and 

carbachol, all of which activate G protein 

coupled receptors coupled to Gq and calcium 

mobilization but not by secretin or VIP which 

activate receptors coupled to Gs and cAMP 

formation (10, 12, 15, 16, 41). By contrast, 

human acini show an increase in pERK in 

response to cholinergic agonist but not CCK 

although this was ascribed to the absence of 

CCK receptors (24).  ERK1/2 is also activated 

by EGF, HGF, IGF-1 and other growth factors 

which activate Tyr kinase containing 

receptors (1, 10, 51).  Most mechanistic 

studies have utilized CCK and EGF as they 

induce the most robust activation.  Both of 

these agonists activate ERK1/2 within 

minutes in vitro with the response sustained 

for at least an hour.  CCK effects are seen at 

3 or 10 pM which is slightly higher than that 

required to mobilize Ca2+ or stimulate 

digestive enzyme secretion. TGF-β has also 

been shown to activate ERK1/2 in pancreatic 

acini with the effect mediated by Smad4 (46). 

In vivo, there is little change in phospho ERK 

between fasting and refeeding chow but 

phospho ERK shows a large increase after 

refeeding chow with trypsin inhibitor that 

increases plasma CCK to around 10 pM and 

induces adaptive pancreatic growth (18, 47, 

48).  In another type of growth, p42 and p44 

MAPK were shown to be activated during 

pancreatic regeneration following partial 

pancreatectomy (33).   

 

ERK appears to be activated in pancreatic 

acinar cells by the canonical pathway of RAF 

– MEK – ERK as RafA, RafB and c-Raf1 as 

well as MEK1 and MEK2 are all present and 

activated by CCK and EGF (15, 16).  EGF 

activates this pathway by activating Ras and 

is not blocked by inhibiting Protein Kinase C 

(PKC) (10).  Whether CCK activates Ras is 

unclear with different reports indicating 

activation (13, 16) or lack of activation (10).  

The two studies showing activation used high 

concentrations of CCK.  In addition the effects 

of CCK to activate ERK were blocked by a 

PKC inhibitor but not by dominant negative 

Ras (9, 35). It appears that the CCK1 

receptor and receptors for other agonists that 

activate Gq primarily activate PKC via Ca2+ 

and diacylglycerol (DAG) and thereby activate 

the ERK pathway and the ERK mediator RSK 

(2).  In some other cell types a pertussis toxin 

(PTx) sensitive G protein is involved in ERK 

activation.  In AR42J cells derived from a rat 

pancreatic tumor, PTx partially inhibited ERK 

activation in response to CCK, EGF and 

phorbol ester (37).  However, this was shown 

to be due to disinhibition of adenylyl cyclase 

signaling.  Gastrin or CCK2 receptors have 

also been shown to be able to activate ERK 

(9, 14). In contrast to rodent pancreatic acini, 

in AR42J cells the action of CCK to induce 

ERK activation was mediated by the CCK2 

receptor, the tyrosine kinase Yes and 

transactivation of the EGFR (36).  This 

transactivation is known to occur in some 

cells but in rat pancreatic acinar cells there 

has been no CCK induced EGFR activation 

observed (11).  Another mechanism for ERK 

activation in some cells is through G protein 

coupled receptors kinases that phosphorylate 

the receptor which then binds β-arrestins 

which recruit other signaling molecules and 

mediate the prolonged activation of ERK (32).  

However, a β-arrestin mechanism has not 
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been described for pancreatic acini or the 

CCK1R. 

 

There is only a little information on the 

inactivation of ERK in acinar cells.  In one 

study, pancreatic DUSP mRNA levels were 

very low but DUSP 5, -6, and -10 were 

induced by caerulein hyperstimulation such 

that they could be considered early response 

genes (21). 

 

3. Actions of ERK1/2 in pancreas 

cells 

ERK1/2 as protein kinases have broad 

substrate specificity for Ser or Thr residues 

upstream from Pro and can phosphorylate a 

large number of proteins with 659 target sites 

listed in a recent compendium (49).  There 

are also 296 reported ERK-interacting 

proteins whose function may thereby be 

influenced by ERK (50).  These include a 

number of molecules known to be important 

in pancreatic function including Stim1 which 

regulates Ca2+ entry channels (38) and 

Raptor (4) which promotes activation of the 

mTOR complex 1 (TORC1).  However, most 

of the cellular responses of ERK signaling 

cascade include proliferation, differentiation, 

angiogenesis, survival, and metastasis.  Many 

of the experimental studies have used MEK 

inhibitors as MEK is the only known activator 

of ERK1/2.  The first MEK inhibitor was 

PD98059 which is a flavone and highly 

insoluble in water (17).  Another MEK inhibitor 

U0126 was discovered shortly thereafter and 

is slightly more potent.  These inhibitors have 

been used for in vitro studies of ERK 

signaling but were not very useful for in vivo 

studies due to poor solubility and short half-

life. This led to the development of PD325901 

and later Trametinib (GSK1120212) which are 

longer acting and effective experimentally in 

vivo (45). 

 

In pancreas, as in other cell types, most 

studies of ERK action have focused on 

growth, proliferation and regeneration as 

ERK1/2 is recognized as a master regulator 

of the cell cycle focused on the G1 to S phase 

transition (31).  To study adaptive growth 

mediated by CCK, Holtz et al fed mice trypsin 

inhibitor and showed that both PD325901 and 

Trametinib blocked acinar cell mitogenesis 

and pancreatic growth (22).  The drugs were 

effective when fed orally by gavage or mixed 

into food and a single bolus dose was 

effective for at least 12 hours.  Moreover, the 

drugs had no effect on other signaling 

pathways including mTOR, JNK, and STAT3.  

Cell cycle proteins including cyclin D1, D3 

and E as well as PCNA and BrdU 

incorporation into DNA were inhibited.  In 

vitro, inhibiting ERK with U0126 or PD98059 

blocked proliferation of acinar cell monolayer 

cultures (19). 

 

ERK activation has also been shown to play a 

role in cytokine production by pancreatic 

acinar cells.  In isolated mouse acinar cells, 

PD98059 decreased production of MCP-1, 

MCP1α and MIP-2 induced by Substance P 

(41) and in rat pancreatic fragments, 

PD98059 reduced production of TNF-α and 

IL-1β induced by cerulein (44).  The 

stimulation of cytokine production in both 

cases involved AP-1 transcription factor that 

is also blocked by inhibitors of JNK.  EGR-1 is 

another early response gene whose 

expression in AR42J cells was shown to be 

blocked by ERK inhibitor PD98059 or 

overexpression of DUSP-1 (MKP-1) (25).  

MEK inhibition by either targeted shRNA or 

Trametanib has also been shown to reduce 

inflammatory cytokines in cerulein induced 
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chronic pancreatitis (20).  Some of this 

activation of MAPKs may be mediated by 

reactive oxygen species as hydrogen 

peroxide and menadione strongly activated all 

three MAPKs and the activation by CCK was 

reduced by antioxidants (8). 

 

4. ERK1/2 and Pancreatic Disease 

Active ERK1/2 has been observed in both 

pancreatitis and pancreatic cancer and 

localized to acinar cells, inflammatory cells 

and PanINs, the precursor lesion to PDAC 

(Pancreatic ductal adenocarcinoma).  Early 

studies evaluated the role of ERK1/2 in acute 

pancreatitis utilized PD 98059 and U0126 

dissolved in DMSO that was administered IP 

to rats or mice; in both studies modest to 

moderate inhibition of cerulein-induced 

pancreatitis was observed (5, 30, 34).  

Inhibition of ERK in isolated acinar cells with 

PD98059 blocked the upregulation of the 

Neurokinin 1 receptor induced by cerulein 

(27).  More recent studies in vivo using the 

much longer acting and water soluble 

inhibitors PD 325901 or Trametanib both of 

which block ERK activity by the oral route had 

no effect on acute pancreatitis but could 

reverse chronic pancreatitis (6, 20). The ERK 

inhibitors also prevented the regeneration that 

occurs after pancreatitis through mitogenesis 

of acinar cells.  These studies are 

complicated by the fact that ERK is present in 

more than one cell type. The evidence is 

clearer for a role in JNK in acute pancreatitis 

with ROS being one cause of activation.   

 

Studies in PDAC are clearer as in mouse 

models with active Ras or with chronic 

pancreatitis, inhibition of ERK by PD 325901 

or targeted shRNA to MEK prevented the 

development of ADM (Acinar Ductal 

Metaplasia) and PanINs (6, 20).  ERK 

activation has also been reported to play a 

role in epithelial to mesenchymal transition 

induced by TGF-β (39).  MEK inhibitors block 

growth of some but not all PDAC derived cell 

lines (7).  Unfortunately, MEK inhibitors by 

reducing ERK feedback on Ras signaling 

have also activated other pathways including 

PI-3K - Akt which serve to maintain 

carcinogenesis (52). Current clinical trials of 

MEK inhibitors also often include comparison 

to combined therapy with both ERK and AKT 

inhibitors. 
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