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1. Introduction and Background 

While severity in conventional animal models of AP 

is related to etiology, this rarely happens in human 

disease. Most obese individuals do not experience 

an episode of acute pancreatitis (AP) during their 

lifetime, but those who do develop AP are more 

prone to severe acute pancreatitis (SAP) and 

associated morbidity and mortality (1).  In this 

entry, we will discuss the relevance of obesity and 

lipids as potential modifiers of the course and 

outcome of AP in the light of limitations posed by 

conventional models of acute pancreatitis and 

suggest relevant improvisations with examples in 

various in vitro and in vivo systems. 

 

From the perspective of pancreatitis and is 

experimental models, visceral fat depots can be 

divided into intrapancreatic and those around the 

pancreas i.e. peripancreatic fat. Both of these can 

contribute to SAP in humans. The human facts 

relevant to the nature and amounts of lipid used in 

the sections on experimental models are: 1. More 

than 30% body weight may be contributed by 

adipose tissue during obesity. 2) Obesity is 

associated with SAP (32, 43, 45, 46) and is defined 

as a BMI of >30 kg/m2 in western countries or >25 

kg/m2 in the East. 3) Clinical studies from the west 

(12, 36, 44, 47, 81, 89) and Asia (91, 98, 110, 111) 

report increased SAP above the corresponding 

BMIs. 4) There is a higher consumption of 

polyunsaturated fatty acid (PUFA) (42, 84, 88, 103) 

in Asia compared to the west (41, 42, 88). 5) 

Dietary PUFAs accumulate in visceral adipocytes 

(88). 6) 80-90% of adipocyte mass may comprise 

triglyceride. 7) Intra pancreatic fat increases with 

BMI (86) and may comprise an average of about 

20% pancreatic area in obese individuals.  8) 

Peripancreatic fat may commonly range from 2-9 

Kg in obese individuals. Both these depots may by 

hydrolyzed in pancreatitis contributing to SAP. 

While further details on obesity related human data 

are provided in the chapter “Relationship between 

obesity and pancreatitis” (63), in this section we 

shall focus on studying the impact of obesity in 

animal models of pancreatitis. 

 

Limitations of Current Animal Models in the 

Context of Human AP 

Current animal models of acute pancreatitis are 

classified for severity on the basis of an 

inducer/etiology causing pancreatic necrosis (54). 

This is a significant limitation since severity in 

human AP is unrelated to pancreatic necrosis or 

etiology, with the exception of hypertriglyceridemic 

pancreatitis (25, 26, 55).  Rat caerulein pancreatitis 

is considered milder due to the lesser pancreatic 

necrosis (54, 72)  while, mouse caerulein 

pancreatitis is considered a severe acute 

pancreatitis model due to the higher amount of 

acinar necrosis ranging from 5-30% (45, 54, 57). In 

both these models, the pancreas returns to 

baseline after a few days of inducing AP. Similarly, 

lung injury in these is mild and transient with no 

evidence of impaired gas exchange.  

 

In contrast, development of necrosis during human 

AP may not result in worse outcomes. While 

severe pancreatic necrosis is defined as 

development of pancreatic parenchymal necrosis 

of more than 30% during human disease (31), a 

prospective human study from the United Kingdom 
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showed no/minimal relationship between the 

extent of necrosis and outcome (56). SAP and 

early mortality in human AP can occur with minimal 

pancreatic necrosis (16, 32, 61) due to systemic 

complications or sustained organ failure (31). A 

number of studies have documented that only 

about half of patients with necrotizing pancreatitis 

develop organ failure (46, 78, 97). 

 

Taurocholate induced pancreatitis in rats is 

considered severe due to the extensive pancreatic 

hemorrhagic necrosis noted in this model (5, 54, 

72). To induced AP 3 to 5% solutions of bile salts  

such as sodium taurocholate are injected locally 

into the bilio- pancreatic duct, aimed at stimulating 

severe biliary acute pancreatitis (5). This results in 

a local concentration of 60 to 100 mm, which is 5 

to 100 fold above the critical micellar concentration 

(94) which can cause a detergent like effect on cell 

membranes in the pancreatic acinar cells. 

Currently while no published study has verified the 

appropriateness of these concentrations of bile 

salts in relevance to human disease, our 

unpublished data shows bile acid concentrations to 

average at 25 µM in pancreatic collections from 

patients with biliary AP. A recent review by Lerch 

and Gorelick also questioned the injection of bile 

acids/salts as a model for biliary acute pancreatitis 

(54). 

 

Clinically, it is often difficult to establish the causal 

agents responsible for the severity in human acute 

pancreatitis, since markers and mediators of 

disease are indistinguishable. Animal models allow 

initiation and inhibition of steps relevant to the 

patho-physiology of the disease and are thus 

important in establishing causality. Several 

potential targets like trypsin (6, 7, 9, 14, 18, 75, 90, 

100, 101) and reactive oxygen species (2) have 

been considered of therapeutic relevance since 

their levels may be increased in acute pancreatitis.  

However clinical trials of acute pancreatitis 

targeting reactive oxygen species (2) trypsin (6, 7, 

9, 14, 18, 75, 90, 100, 101) and inflammatory 

mediators (43) have shown limited benefits, 

although these targets seem scientifically sound in 

animal models. The discord between modification 

of outcomes and interpretation of animal models 

can be seen in the lack of evidence of clinical 

improvement despite more than 70 trials of serine 

protease and trypsin inhibition over the last six 

decades (6, 7, 9, 14, 18, 75, 90, 100, 101). Thus, 

based on i) lack of relevance of etiology to 

outcomes, ii) lack of accurate parameters used to 

define systemic injury, iii) limited clinical benefits of 

attractive therapeutic targets in animal models and 

iv) overemphasis of pancreatic necrosis in defining 

AP severity we need to interpret the relevance of 

conventional AP models with caution. 

 

2. Role of Obesity and Lipids in Acute 

Pancreatitis  

Obesity is known to be associated with worse 

acute pancreatitis outcomes (3, 19, 29, 68, 74, 81, 

89, 91) and several clinical and epidemiological 

studies have shown that patients with increased 

intra-abdominal fat or higher body mass index 

(BMI) are at an increased risk for developing SAP 

(33, 68, 85, 111). The two other clinical clues to 

lipids worsening AP outcomes are i) 

hypertriglyceridemic pancreatitis generally being 

severe (13, 25, 26, 55, 106) and ii) AP patients 

receiving intravenous total parenteral nutrition 

including IV lipids having worse outcomes (77, 79, 

109). Recent reports from North America show the 

usage of parenteral nutrition to be as high as 40 to 

60% in patients with acute pancreatitis (95, 105). 

The prevalence of organ failure is reported to be 

more than 50% in patients receiving parenteral 

nutrition containing intravenous lipid emulsions 

(77, 79, 109). IV lipids may result in high systemic 

fatty acid concentrations, 6 to 8 fold above normal 

(38), consistent with levels found in the serum of 

patients with SAP (27, 73). These associations of 

obesity/ lipids in causing worse outcomes suggest 

the role of fat as a common modifier of AP 

outcomes.  In the following sub sections, we will 

discuss the mechanistic, translational and potential 

therapeutic relevance of obesity in the context of in 

vitro and in vivo models of acute pancreatitis.  

In vitro Models of Fat Mediated Severe 

Acute Pancreatitis 



3 

The purpose of an in vitro model is to replicate the 

pathophysiology occurring in vivo in a reductionist 

manner. Therefore, the design of fat induced 

pancreatic damage model should simulate the in 

vivo environment. Several studies show evidence 

of pancreatic parenchymal necrosis around fat 

necrosis. (4, 48, 62, 67). Physiologically, 

adipocytes and the neighboring pancreatic acinar 

cells do not allow their contents to communicate 

with each other. Acinar cells physiologically 

secrete digestive enzymes present in zymogen 

granules from their apical region into the duct 

lumen; however, an insult which causes 

pancreatitis can result in basolateral leakage of 

lipases into the surrounding adipocytes (20, 21, 30, 

34, 48, 50) and consequent lipolysis of adipocyte 

triglyceride, producing free fatty acids(FFA). This is 

seen histologically as positive Von Kossa staining 

(4, 62) and high FFA levels in pancreatic necrosis 

collections (28, 62, 71). 

 

This pathologic in vivo lipolytic flux between 

adipocytes and acinar cells can be simulated in 

vitro using a trans-well system which allows macro 

molecular diffusion between the acinar and 

adipocyte compartments, while preventing cellular 

contamination of the individual compartments 

(Figure 1) (4, 62).  

Figure 1: Schematic showing the setup to study In Vitro Lipolytic Fluxes. After harvesting, primary acinar cells 

are added to the upper compartment of the Transwell (with a 3 micron sieve at bottom of insert; Yellow) and primary 

adipocytes to the lower compartment of the well (Red). Medium from the individual compartments is analyzed for 

lipolytic and exocrine products, and the acinar cells are harvested for measuring parameters of necrotic cell death. 
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Figure 2: In Vitro Co-Culture of Acini and Adipocytes results in acinar necrosis. A to C show propidium 

iodide(PI) uptake in control acini (A), acini cocultured with adipocytes (B) or with adipocytes along with 50 µM orlistat 

(C). (D) Percentage of acinar cells which are positive for PI uptake in co-culture with adipocytes (Ac+Ad) are higher 

compared to acini cultured alone (Ac), with 50 µM orlistat (Ac+Orli), or 50 µM orlistat (Ac+Ad+Orli) in co-culture. (E) 

ATP levels in acinar cells treated as in (D) show a reduction in ATP level in the co-culture. (F) Cytochrome C (upper 

panel) in mitochondrial (M) and cytoplasmic(C) fractions of Ac, Ac+Ad, and Ac+Ad+Orli, show a migration from the 

mitochondrial compartment to the cytosolic compartment only in the Ac+Ad group. Mitochondrial marker COX IV 

(lower Panel) is similar in all groups. (G) Total NEFA concentrations in the medium of acini cells treated as in (D), 

show increased NEFA in Ac+Ad only.  Republished with permission from (62). 

 

The pancreatic lipases released from the acinar 

compartment diffuse through the transwell into the 

adipocyte compartment causing an increase in free 

fatty acids, which in turn diffuse into the acinar cell 

compartment resulting in acinar cell necrosis (4), 

seen as increased propidium iodide uptake, a drop 

in ATP levels, cytochrome C leakage and an 

increase in NEFA levels (Figure 2) (62). The lipase 

inhibitor orlistat prevents all these changes in the 

co-culture system. 

 

Mossner et. al in 1992 showed the direct 

deleterious effect of long chain unsaturated fatty 

acids on pancreatic acini (60).  Recently, Navina 

et. al showed that linoleic acid, oleic acid and 

linolenic acid were particularly toxic to acinar cells, 

while the saturated fatty acids palmitic acid and 

stearic acid were not (62). Incubation of  

 

acinar cells with VLDL also results in an increase 

in free fatty acids, resulting in necrotic injury. (92)  

When acinar cells are stimulated with individual 

fatty acids, cytosolic calcium concentrations, 

released from an intracellular pool, are increased 

only with unsaturated fatty acids (Figure 3) (62).  

 

Unsaturated fatty acids also cause leakage of 

lactate dehydrogenase, leakage of cytochrome C 

into the cytoplasmic fraction and inhibition of 

mitochondrial complexes I and V, causing a drop in 

ATP levels to induce necrotic cell death (Figure 3) 

(62, 71). Unsaturated fatty acids at sublethal 

concentrations also up-regulate mRNA levels of 

inflammatory mediators and thus are pro-

inflammatory (62).  
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Figure 3: Unsaturated fatty acids induce acinar necrosis and inflammatory mediator generation. (A) Intra-

acinar calcium concentrations (expressed as 340/380 emission ratio) in response to addition (arrow) of 600 µM fatty 

acids (LLA, linolenic acid; LA, linoleic acid; OA, oleic acid; SA, stearic acid; PA, palmitic acid), showing release of 

intra-cellular calcium only with unsaturated fatty acids – LLA, LA and OA (B) Effect of depletion of endoplasmic 

reticulum calcium with thapsigargin (1 µM) (blue line) and depletion of extracellular calcium by chelation with EGTA 

(1 mM added 10 min before adding linoleic acid, pink) on 600 µM linoleic acid– induced intracellular calcium 

increase. (C) Leakage of Lactate Dehydrogenase (LDH) from acinar cells 5 hours after treatment with fatty acids 

as in (A). Unsaturated fatty acids cause releases of LDH, while saturated do not. (D and E) Effect of linoleic and 

palmitic acids on mitochondrial complex (Cx.) I and V activity in acini. Linoleic acid paralyses Cx. I and V, while 

palmitic does not. (F) Effect of linoleic and palmitic acids on TNF-α mRNA in acini. (G) Effect of linoleic and palmitic 

acids on CXCL1 mRNA in acini. (H) Effect of linoleic and palmitic acid CXCL2 mRNA. Linoleic acid but not palmitic 

acid causes an increase in all three.  Republished with permission from (62). 

Exposure of peripheral blood mononuclear cells to 

unsaturated fatty acids at concentrations lower 

than those in the serum during SAP, results in their 

necro-apoptotic cell death (71).   

 

In Vivo Models of Obesity Associated 

Severe Acute Pancreatitis 

 

Role of Intra Pancreatic Fat (IPF) in Pancreatic 

Necrosis 

Histologically, several studies show pancreatic 

acinar necrosis to border fat necrosis (48, 62, 66, 

76, 87). Those studies analyzing intrapancreatic fat 

in human autopsy samples (4, 48, 62, 69, 86, 87), 

surgically resected samples (83) and radiological 

appearance of pancreas (58, 86) show 

intrapancreatic fat to be increased with BMI. 

Intrapancreatic fat amounts in obese individuals 

are on an average, two fold higher than non-obese 

individuals (86). Analysis of pancreatic adipocyte 

triglyceride composition in humans showed 

increasing amounts of unsaturated triglycerides 

with higher amounts of fat. (80) Pancreatic 

necrosis fluid collected from obese patients with 

necrotizing pancreatitis had higher nonesterfied 

fatty acid concentrations compared to patients with 
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pseudocysts and cystic neoplasms, who had a 

lower BMI (28, 62, 71, 73).  

 

Several in vivo models have contributed to our 

understanding of the role of intrapancreatic fat in 

severe acute pancreatitis outcomes (28, 62). 

Obese mice have increased intrapancreatic fat 

(about 30% of total pancreatic area) resulting in 

lethal severe acute pancreatitis in response to IL-

12, IL-18 that is associated with increased acinar 

necrosis (62). In these mice, a significant amount 

of pancreatic acinar necrosis (60-70% area) occurs 

in areas surrounding the fat necrosis, which is 

termed peri-fat acinar necrosis (PFAN). This PFAN 

contributes to about half the total acinar necrosis in 

these obese mice (62). In contrast, lean mice have 

less intrapancreatic fat, PFAN and have non-lethal 

SAP (62). Grossly obese mice have chalky white 

deposits of saponification, consistent with fat 

necrosis histologically (62). Evaluation of the 

triglyceride composition of adipose tissue in these 

obese mice show unsaturated fatty acids to be 

significantly increased in obese mice compared to 

lean mice, with a corresponding relative decrease 

in saturated fatty acids (62, 76). Normally, visceral 

fat pads of obese mice have about 70-80% 

unsaturated fatty acids which is significantly more 

than in lean mice which have about 50-60% 

unsaturated fatty acid content (62, 76).  

 

The role of acute lipolytic generation of fatty acids 

on local pancreatic severity has been studied 

recently by Durgampudi et. al by injecting 

unsaturated triglyceride into the pancreato-biliary 

duct to increase intra pancreatic fat (28). 

Intraductal triglyceride injection followed by duct 

ligation, allows for triglyceride to be mixed with 

pancreatic lipases as would occur with basolateral 

leakage during acute pancreatitis, causing 

subsequent lipolysis of glyceryl trilinoleate 

mimicking intrapancreatic fat necrosis seen in 

obese patients with SAP (4, 62). Ligation of 

common bilio-pancreatic duct results in elevated 

amylase, lipase, bilirubin and ALT, fulfilling all the 

criteria of mild biliary AP. Intraductal injection of the 

triglyceride glyceryl trilinoleate (GTL), in amounts 

equivalent to about 10% of intrapancreatic fat, 

along with duct ligation, results in severe 

hemorrhagic pancreatic necrosis with about 70% 

necrosis of the pancreatic acinar tissue, 

multisystem organ failure and mortality (28). This 

acinar parenchymal damage is prevented by 

inhibition of GTL lipolysis to linoleic acid by Orlistat 

(28). This inhibition does not affect the increase in 

serum amylase, bilirubin or ALT which mark biliary 

AP. Thus, in an animal model simulating biliary AP 

(classically regarded as a severe AP model), it was 

shown that outcomes are unrelated to the etiology 

of AP and intrapancreatic fat is a modifier of 

outcomes, converting mild AP to SAP (28). Hence, 

in obesity associated SAP, extracellular 

basolateral unregulated release of pancreatic 

lipase consequent to an initial insult may cause 

lipolysis of intrapancreatic fat, resulting in an 

increase in free fatty acids, which directly damage 

the acinar cells, causing necrosis.  

 

A surge in systemic unsaturated fatty acids also 

results in significant mortality in these experimental 

models (28, 62, 76), similar to the trend of a rise in 

free fatty acids, particularly unsaturated fatty acids 

in the sera of patients with SAP (96). Prevention of 

lipolysis results in reduction in free fatty acids and 

systemic inflammatory markers (28, 62, 76). As 

noted in the spectrum of human SAP, obese 

animals or animals with higher unsaturated fatty 

acids generated by the lipolytic surge are more 

prone to multisystem organ failure in the form of 

renal failure and lung injury. Renal injury manifests 

as fat containing tubular vacuoles, tubular 

apoptosis and necrosis, along with mitochondrial 

swelling, expression of kidney injury molecule-1 

(KIM-1) with associated functional renal injury in 

the form of high blood urea nitrogen (BUN) levels 

(28, 62, 76). Lung injury is manifested as increased 

apoptotic cells and lung myeloperoxidase levels 

(62, 76). Several isolated studies have previously 

shown intravenous oleic acid to cause acute 

respiratory distress syndrome with lung 

myeloperoxidase increase and apoptosis (39, 40, 

49, 108). Unsaturated fatty acids are also known to 

cause elevation in the serum creatinine and cause 

renal tubular toxicity (108).This is also associated 

with release of pro inflammatory cytokines, which 
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have been reported to be increased in human SAP 

(8, 11, 23, 24, 37, 59, 102, 107). Recent studies 

from Closa et. al in rats showed unsaturated free 

fatty acids generated in peritoneal adipose tissue 

during pancreatitis to accumulate in ascitic fluid, 

and cause the release of inflammatory mediators 

that contribute to the progression of the systemic 

inflammatory response seen in severe acute 

pancreatitis (35).  

 

In contrast to the intrapancreatic fat of obesity, the 

pancreatic fat present in chronic pancreatitis 

patients is rarely associated with severity during 

pancreatitis (17, 51, 53, 64, 70, 93, 104). A 

common feature of patients with chronic 

pancreatitis is fatty replacement of the pancreas 

after recurrent attacks of acute pancreatitis (82). 

Secondary fat replacement in chronic pancreatitis 

is independent of BMI and is associated with 

fibrosis which causes a protective walling off effect 

from the adipocyte-acinar lipolytic flux generated 

during acute pancreatitis (4, 62). This is supported 

by observations that chronic pancreatitis patients 

rarely die from acute pancreatitis or its related 

complications (51, 65, 70). Acharya et. al have 

showed that unlike obesity associated 

intrapancreatic fat which worsens acute 

pancreatitis outcomes, intrapancreatic fat 

accumulation in chronic pancreatitis is less prone 

to fat necrosis or surrounding parenchymal 

damage (4). In reference to fatty acid ethyl esters 

(FAEEs), it is noteworthy that the landmark study 

documenting high FAEE amounts in the pancreas 

of humans at autopsy clearly states that they had 

no pancreatitis. The study was done on alcoholics 

who had died from unrelated causes such as motor 

vehicle accidents (52). Criddle et. al have also 

shown that it is the conversion of FAEEs to FFAs 

which results in cell injury (22). This is supported 

by our studies in which we note the parent fatty 

acids to be much more toxic than FAEEs 

(unpublished data). Thus while the role and 

relevance of FAEEs to AP outcomes is unproven, 

and the human and experimental data mentioned 

above strongly support the lipolytic generation of 

UFAs to convert AP to SAP in obesity. 

 

Role of Peri Pancreatic Fat in Severe Acute 

Pancreatitis 

Visceral adipose tissue, such as surrounding the 

pancreas, contributes to about 10 to 30 % of the 

intra-abdominal area (15). This adipocyte mass 

can provide a potentially hydrolyzable pool of 

triglycerides during acute pancreatitis. Adipocytes 

normally consist of more than 80% fat, stored in the 

triglyceride form (99). Unregulated release of 

pancreatic lipases during an acute attack of 

pancreatitis can result in the breakdown of these 

triglycerides causing release of very high amounts 

of free fatty acids, resulting in adverse outcomes.   

 

Obesity is considered as a proinflammatory state.  

A recently published study by Patel et. al has 

shown a traditionally mild model of caerulein acute 

pancreatitis to have severe outcomes in obese but 

not lean mice (76). Mortality in obese mice is 

associated with fat necrosis and peritoneal 

saponification, hypocalcemia, an intense cytokine 

response, lung injury and renal failure which are all 

commonly used markers in known severity scoring/ 

predicting systems of acute pancreatitis (10, 76). 

Visceral fat pads of obese mice with AP showed 

the presence of active pancreatic lipases (76). The 

amount of pancreatic necrosis was not significantly 

different in the lean vs. obese vs. orlistat treated 

groups. However both the lean and orlistat treated 

groups had reduced fat necrosis, lack of sustained 

organ failure, a transient cytokine response and 

improved survival. Histologically, the areas of fat 

necrosis were surrounded by intense accumulation 

of polymorphonuclear neutrophils and 

macrophages (35, 76) suggesting that these 

necrotic areas of adipose tissue generate and 

release inflammatory mediators that contribute to 

the progression of the inflammation during SAP 

(76).  

 

A recent study by Noel et. al (71) helped distinguish 

between the acute unsaturated fatty acid mediated 

lipotoxicity during SAP from the chronic 

inflammatory state of obesity. For this the amount 

of peri-pancreatic triglyceride was acutely changed 

by administration of triolein (the triglyceride of oleic 

acid, which is the most abundant UFA in visceral 
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fat) in lean rats with caerulein pancreatitis. This 

resulted in acute lung and renal injury with minimal 

pancreatic necrosis and an intense cytokine 

response, all of which were prevented by inhibiting 

lipolysis. Conversely, while the co-administration of 

the cytokines IL8 and IL-1β, which are also 

increased in pancreatic necrosis collections, did 

cause pyrexia, they did not lead to any adverse 

outcomes. Thus peri-pancreatic fat necrosis may 

worsen inflammation and AP outcomes  

independent of the baseline proinflammatory state 

of obesity (71).  

 

In summary we have learnt that obesity worsens 

the outcomes of acute pancreatitis due to the acute 

lipolytic generation of unsaturated fatty acids. This 

is unrelated to the baseline pro-inflammatory state 

of obesity and unrelated to the etiology of AP. 

While the hydrolysis of intrapancreatic fat by 

pancreatic lipases contributes to pancreatic 

necrosis in obesity, in chronic pancreatitis fibrosis 

reduces this lipolytic flux and resulting severity of 

recurrent AP attacks. Necrosis of the large 

amounts of peripancreatic fat can worsen AP 

outcomes independent of pancreatic necrosis. 

These observations mimic human disease, support 

obesity as modifier of outcomes, and also suggest 

a different way to design and interpret models of 

AP which are not directly linked to the etiology. 
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