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1. Introduction 

Excessive alcohol consumption is a major 
contributor to diverse pathologies with an 
estimated 4 in 100 deaths worldwide caused by 
alcohol according to the World Health 
Organization (65). The close association between 
alcohol consumption and acute pancreatitis (AP) 
has been recognized for a long time, with 
Friedrich first describing the Drunkard's Pancreas 
in 1878, although elevated intake of alcohol had 
been linked to pancreatic disease a century 
earlier (4). More recently, a Danish population-
based cohort study has shown an increased risk 
of AP in individuals who consumed in excess of 
14 drinks per week, irrespective of the type of 
beverage or frequency of intake (Kristiansen et 
al., 2008). A subsequent meta-analysis indicated 
that an elevated risk of AP exists in those 
imbibing greater than 4 drinks per day (26). 
Despite the recognized risk of AP increasing with 
alcohol intake its basis remains incompletely 
understood and no specific therapy exists (52). 
Intriguingly, some individuals appear more 
susceptible to developing AP linked to excess 
alcohol consumption than others, with less than 
10% of heavy drinkers developing clinical 
disease. However, this phenomenon has no clear 
explanation and clearly is an important area for 

investigation. Progress in elucidating the 
pathophysiology of alcoholic AP has been 
complicated by the fact that alcohol alone does 
not induce AP reliably in experimental animal 
models, with additional factors required to model 
alcohol-induced pancreatic inflammation and 
damage, including caerulein, lipopolysaccharide 
and ductal obstruction that may not accurately 
reflect the clinical situation (34). Direct sensitizing 
actions of ethanol are thought to contribute to 
damaging effects (50), including activation of 
NFκB in pancreatic acinar cells via the ε isoform 
of protein kinase C (58) and activation of 
cholinergic pathways (36). Recent work has 
focused on the way in which alcohol metabolism 
may be involved in mediating pancreatic toxicity. 
 
2. Ethanol Metabolism 

Ethanol is metabolized in the pancreas by both 
oxidative and non-oxidative routes (5, 16). Current 
evidence indicates that both pathways are likely to 
contribute to the detrimental effects of alcohol on 
the exocrine pancreas, via distinct mechanisms 
that ultimately compromise mitochondrial function 
(7, 9, 44, 60). Oxidative metabolism (OME) 
proceeds through several nicotinamide adenine 
dinucleotide (NAD+) consuming steps performed 
by alcohol and aldehyde dehydrogenases (ADH 
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and ALDH) that generate acetaldehyde and 
acetate, respectively. Recent findings have 
suggested that ethanol induces mitochondrial 
dysfunction via a reduction of the ratio of oxidized 
to reduced nicotinamide adenine dinucleotide, a 
mechanism distinct from the effects of 
cholecystokinin hyperstimulation which are 
mediated by increasing cytosolic calcium ([Ca2+]c) 
(54, 60). 
 
In contrast to oxidative metabolism of ethanol 
(OME), non-oxidative metabolism of ethanol 
(NOME) promotes esterification of fatty acids to 
yield highly lipophilic fatty acid ethyl esters 
(FAEEs) via FAEE synthases including 
carboxylester lipase (CEL). FAEE synthase 
activity occurs in the human pancreas at rates of 
up to 54 nmol/min/g tissue, generating high 
localized levels of FAEEs (12). An autopsy study 
showed that individuals who died of acute alcohol 
intoxication had preferentially elevated FAEEs in 
the pancreas, in contrast to other organs 
commonly damaged by alcohol such as the heart 
and lungs (32), suggesting importance of NOME 
to pancreatic damage. In vivo studies in rats 
subsequently confirmed that saturated FAEEs 
induced pancreatic damage indicative of AP (63). 
Furthermore, administration of ethanol, under 
conditions of OME inhibition, generated plasma 
and tissue FAEEs and development of AP (64). 
Early (<15 mins.) redistribution of CEL into the 
cytosol from a predominantly apical, granular 
localization within the pancreatic acinar cell 
occurred following in vivo administration of fat and 
alcohol to mice in a new in vivo model of alcoholic 
AP (FAEE-AP) (24). Furthermore, inhibition of 
CEL blocked FAEE generation and ameliorated 
detrimental effects of fat and alcohol (24). In AP 
patients, elevated CEL is detectable in necrotic 
pancreatic lobules and in areas of fat necrosis (1), 
consistent with localized generation of toxic 
FAEEs in areas of damage. In pancreatic acinar 
cells FAEEs released calcium from the 
endoplasmic reticulum (ER) via stimulation of 
inositol trisphosphate (IP3) receptors, causing a 
depletion of internal calcium stores that led to 

store-operated calcium entry (SOCE), promoting 
toxic, sustained elevations of cytosolic calcium 
([Ca2+]C) that lead to necrotic cell death (7, 9, 10). 
Furthermore, FAEEs underwent hydrolysis to fatty 
acids in the mitochondria causing a localized 
elevation that compromised mitochondrial function 
(9, 25, 31). Pharmacological inhibition of 
hydrolase enzymes significantly reduced necrosis 
induced by a fat and alcohol combination, 
highlighting the importance of fatty acid release in 
the mitochondria to cellular damage (10). Diverse 
actions of FAEEs have been reported in pancreas 
including increased fragility of lysosomes (19) and  
inhibition of serine proteases (37) that may 
predispose to fibrogenesis and impaired pancreas 
recovery after organ damage in chronic injury 
(38). 
 
Recent progress in understanding the basis of 
alcohol-induced damage has highlighted the 
importance of organellar dysfunction within the 
pancreatic acinar cell as central for initiation of 
AP. In particular, the involvement of mitochondria 
and the endoplasmic reticulum, two organelles 
that are intimately linked spatially and functionally 
to modulate cellular calcium homeostasis, energy 
production, and lipid and protein synthesis 
(Figure 1) (11, 27, 55).  
 
3. Mitochondrial Dysfunction in 
Alcoholic Acute Pancreatitis 

Mitochondria perform a variety of tasks in the 
pancreatic acinar cell, the most important being 
provision of energy for cellular processes 
including secretion of inactive digestive enzyme 
precursors. In order to do this effectively 
mitochondria respond to oscillatory rises of 
[Ca2+]C, induced by hormonal (cholecystokinin) 
and neuronal (acetylcholine) stimulation (6, 45, 
62), by generating NADH, via stimulation of Ca2+-
dependent dehydrogenases of the Krebs Cycle, 
that feeds into the electron transport chain to 
promote ATP production. Additionally, 
mitochondria are thought to constitute a protective 
perigranular buffer barrier that impedes 
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movement of excessive Ca2+ released from the 
apical pole to the basolateral region in which the 
nucleus resides (53). However, when sustained 
rises of [Ca2+]C occur in pancreatic acinar cells in 
response to aberrant Ca2+ signals induced by 
diverse AP precipitants, including CCK 
hyperstimulation, bile salts and ethanol 
metabolites, mitochondrial dysfunction ensues 
that leads to rundown of ATP production and 
induction of cellular necrosis (8, 10, 18, 43).  
 
Recent evidence has shown that the trigger for 
mitochondrial dysfunction in AP is the opening of 
the mitochondrial permeability transition pore 
(MPTP) (44, 60), which permeabilizes the inner 
mitochondrial membrane allowing free movement 
of substances up to 1.5 kDa in and out of the 
organelle. MPTP formation thus leads to collapse 
of membrane potential, dissipating the proton 
gradient necessary for production of ATP. 
Although the exact composition of the pore 
remains controversial, recent evidence has 
indicated that it may be a dimer of the F0/F1-ATP 
synthase (2, 14). In response to AP precipitants in 
both human and murine pancreatic acinar cells, 
calcium-dependent MPTP formation occurred as 
a consequence of IP3 and ryanodine receptor-
mediated intracellular calcium release and 
subsequent SOCE; diminished ATP production 
led to impaired calcium clearance, defective 
autophagy, zymogen activation, cytokine 
production, phosphoglycerate mutase 5 activation 
and necrosis (44). The crucial role played by 
compromised intracellular ATP levels as a result 
of mitochondrial dysfunction has been shown by 
studies in which detrimental effects of AP toxins, 
including non-oxidative ethanol metabolites, were 
preventable by intracellular ATP supplementation 
in isolated pancreatic acinar cells, allowing 
energy-dependent calcium extrusion pumps to 
reduce [Ca2+]C and maintain homeostasis (3, 9, 
44). The mitochondrial matrix protein peptidyl-
prolyl cis-trans isomerase cyclophilin D (CypD) 
plays a pivotal role in modulating the MPTP; all 
biochemical, immunological and histopathological 
responses of AP in four experimental models, 

including alcoholic (FAEE-AP), were reduced or 
abolished by genetic deletion or pharmacological 
modulation of this protein (44), suggesting the 
potential of CypD inhibitors for translational 
therapy. 
 
4. Endoplasmic Reticulum 
Responses with Alcohol 

The endoplasmic reticulum (ER) of the pancreatic 
acinar cell plays a predominant role in the function 
of the cell as protein synthesis and transport are 
highly developed in this cell. It is not surprising 
then that the ER responds to alcohol. A previous 
study has shown that exposure of pancreatic 
acinar cells to ethanol induced a slow, gradual 
release of calcium from the ER (10). The ER not 
only translates mRNA into new proteins 
synthesized in its lumen but it performs several 
post-translational modifications including disulfide 
bond formation facilitated by chaperone-mediated 
protein folding and other post-translational 
modifications such as glycosylation. Correctly 
folded and otherwise modified proteins are 
directed to specific cellular organelles.  As an 
example, the digestive enzyme proteins are 
segregated into the secretory pathway ending up 
in zymogen granules which undergo exocytosis 
and secretion with neurohormonal stimulation. As 
another example, acid hydrolases are 
glycosylated with mannose-6-phosphate which is 
necessary for their transport to the lysosome.   
 
In general protein folding is accomplished in the 
ER by molecular chaperones and folding 
enzymes that include disulfide isomerases and 
oxidoreductases. In addition, there is a quality 
control mechanism that degrades improperly 
processed proteins by proteosomal degradation. 
This process is called ER-associated degradation 
(ERAD). Autophagy also participates in 
degradation of dysfunctional ER and damaged or 
misfolded proteins to prevent cellular toxicity that 
these proteins may cause. (13, 29) 
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Figure 1. A schematic diagram displaying proposed mechanisms of ethanol-mediated Acute Pancreatitis 
(AP). In the pancreatic acinar cell, ethanol can compromise mitochondrial function via two pathways. Oxidative 
metabolism of ethanol to acetaldehyde, via alcohol dehydrogenase (ADH), and to acetate, via aldehyde 
dehydrogenase (ALDH) in the mitochondria, decreases cellular NAD+/NADH balance. Fatty Acid Ethyl Esters 
(FAEEs) are esterification products of fatty acids and ethanol via FAEE synthases including carboxylester lipase 
(CEL). Accumulation of FAEEs elicits Ca2+ depletion from the endoplasmic reticulum (ER) and other cellular 
stores leading to sustained elevations of [Ca2+]c and mitochondrial Ca2+ overload. Furthermore, accumulation of 
FAEEs in mitochondria leads to release of fatty acids, via action of hydrolases, which compromises organellar 
function. Both altered NAD+/NADH ratios and [Ca2+]c  overload have been proposed to elicit opening of the 
mitochondrial permeability transition pore (MPTP), which results in mitochondrial depolarisation, ATP depletion 
and cellular necrosis. Besides ethanol effects on mitochondria, ethanol-induced oxidative stress alters ER redox 
status (not shown) and elicits chronic ER stress, an effect that can be exacerbated by FAEE-induced ER-Ca2+ 
depletion and compromised ATP production. ER stress is manifested by activation of adaptive IRE1/XBP1 
signaling that aids to preserve ER function and protein processing through the secretory pathway. However, 
severe ethanol-induced cellular damage or additional toxic pancreatitis signaling can compromise cellular 
adaptation leading to termination of protective XBP1 signaling and upregulation of cell death pathways 
downstream to mitochondria and PERK/CHOP signaling, and ultimately to pancreatitis.  

In order to adjust to changing demands 
encountered by the ER protein synthesis and 
processing machinery including ethanol and its 
metabolism, eukaryotic cells have developed a 
complex signaling system referred to as the 
Unfolded Protein Response (UPR). Activation of 
the UPR occurs with accumulated unfolded or 
misfolded proteins in the ER lumen, a 
phenomenon termed “ER stress” (56). ER stress 
has several sources, including a physiologic 
increase in the demand for protein folding; 

decreased chaperone function; accumulation of 
permanently misfolded proteins due to mutation; 
decreases in cellular ATP levels or a fall in 
calcium in the ER ([Ca2+]ER); and perturbed ER 
redox status that occurs with alcohol metabolism 
(39, 48). Interestingly, the non-oxidative ethanol 
metabolite palmitoleic acid ethyl ester and 
palmitoleic acid, which is released by hydrolysis of 
its parent FAEE (24), caused complete depletion 
of [Ca2+]ER, with concomitant falls of NADH and 
depletion of cellular ATP (Figure 1) (9, 10). Also, 
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the folding process itself generates reactive 
oxygen species which, in turn, can cause aberrant 
disulfide bond formation (i.e. misfolding). Thus, in 
the case of a continuous misfolding stress as 
occurs with mutation or possibly with ethanol 
metabolism there will be a greater ER stress than 
would occur during a transient increase in 
unfolded proteins as a consequence of the need 
to replenish zymogen stores. 
 
The UPR has three major response systems to 
ER stress. These are a global reduction in mRNA 
translation which attenuates the demand for 
protein processing; an increase in expression of 
chaperones and foldases as well as increased 
phospholipid synthesis to expand the functional 
ER network; and activation of the ERAD and 
autophagic systems to eliminate misfolded and 
aberrant proteins (28, 29, 42, 56, 57). These 
responses are accomplished by identified sensing 
and signaling systems (56, 57). They include 
Inositol-requiring protein-1α (IRE1α), activating 
transcription factor-6 (ATF6), and RNA-activated 
protein kinase (PKR)-like ER kinase (PERK).  
Regarding alcohol-induced ER stress, we found a 
key role for IRE1α in preventing damage to the 
exocrine pancreas (39, 47). Upon its activation, 
an endonuclease activity within IRE1α splices X-
box binding protein-1 (XBP1) mRNA resulting in a 
shorter mRNA (spliced XBP1, sXBP1 mRNA) that 
encodes the active transcription factor sXBP1. 
sXBP1 regulates a broad spectrum of genes 
involved in protein folding, including chaperones, 
disulfide isomerases and oxidoreductases family 
as well as genes for protein degradation (ERAD), 
lipid biosynthesis for ER/Golgi biogenesis, 
vesicular trafficking and redox metabolism (28, 
33). In the exocrine pancreas, sXBP1 is especially 
necessary for acinar cell homeostasis and 
function (33). The critical importance of sXBP1 for 
the function of the pancreatic acinar cell is 
supported by studies using Xbp1+/- mice (39, 40) 
and acinar cell specific Xbp1 null mice (23, 33). 
XBP1 deficiency results in defective stimulated 
secretory response, extensive acinar cell loss and 
inflammation as well as severe pathology in the 

remaining acinar cells, as evidenced by reduced 
levels of ER chaperones, a poorly developed ER 
network and secretory system, marked reduction 
in zymogen granules and digestive enzymes, and 
accumulation of autophagic vacuoles.(23, 40)  
 
Ethanol feeding in rodents induces structural 
changes in the acinar cell consistent with ER 
stress such as ER dilation, mitochondrial swelling 
and some disorganization of cellular 
organelles.(17, 30, 39) However, chronic ethanol-
fed animals, as humans, do not develop 
pancreatitis unless challenged with other toxic 
factors.(49, 51, 61) We found that pancreatic 
mRNA and protein levels of sXBP1 were 
significantly increased in mouse and rats fed 
ethanol-containing diets.(39). In order to 
determine whether the upregulation of sXBP1 by 
alcohol feeding is necessary to maintain 
homeostasis and prevent pancreatitis, we used 
Xbp1 heterozygous mice (Xbp+/-). Compared to 
ethanol-fed wild-type mice (Xbp1+/+), histological 
analysis of pancreatic tissue in ethanol-fed 
Xbp1+/- mice revealed morphologic features of 
severe ER stress such as disorganized and 
dilated ER, accumulation of dense material within 
the ER, and a reduced number of mature 
zymogen granules. These features were 
accompanied by accumulation of autophagic 
vacuoles, and activation of apoptotic signals 
including upregulation of CHOP (see below) 
within patchy areas of inflammatory 
pancreatitis.(39, 40) Moreover, recent studies 
indicate that cerulein-induced AP is more severe 
in XBP1 deficient mice compare to controls 
(unpublished observations). From these studies 
we concluded that alcohol feeding activates an 
adaptive and protective UPR through increased 
expression of sXBP1 involving activation of the 
endonuclease activity of IRE1α. Further, these 
actions of the UPR are necessary to prevent 
cellular toxicities of ethanol. 
  
Whereas IRE1α/XBP1 signaling primarily 
mediates adaptive responses to protect ER 
function, this protective signal can be prematurely 
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attenuated during severe or prolong ER stress 
resulting in upregulation of proapoptotic cell death 
mediated through the transcription factor, C/EBP 
homologous protein (CHOP)(35) as discussed in 
more detail below. Also, genetic inhibition of Xbp1 
is unequivocally associated with potent 
upregulation of CHOP and cell death (33, 39). On 
the other hand, forced and sustained IRE1α/XBP1 
activity enhances cell survival in conditions of 
severe stress (35), further supporting a protective 
role for sXBP1 signaling.  
 
The PERK UPR branch has a dual role. Firstly, 
when activated it rapidly adjusts the cell to ER 
stress by mediating a general attenuation of 
protein synthesis (20, 21, 56, 59). On the hand, 
sustained activation of PERK leads to 
upregulation of the transcription factor, Activating 
transcription factor 4 (ATF4) that targets genes 
involved in antioxidant activities including 
glutathione synthesis (22) and CHOP that 
promotes ER stress-related cell death responses 
(46). CHOP also promotes inflammation by 
regulating cytokine production and promoting the 
survival of inflammatory cells (15, 41). In 
summary, although the PERK activation can play 
a transient protective role, unresolved ER 

stresses leads to upregulation of CHOP and 
promotion of inflammation and pancreatitis.  
 
5. Conclusions 

This chapter reviews two bodies of work related to 
alcohol effects on the exocrine pancreas. One 
addresses mitochondrial functional changes and 
the other endoplasmic reticulum responses, 
phenomena that may be interrelated in acute 
pancreatitis (Figure 1). Alcohol-induced disorders 
of both organelles make the pancreas susceptible 
to alcohol-induced injury and recent advances 
suggest the potential for translational therapy. 
Interestingly, there are some protective responses 
coming from the endoplasmic reticulum UPR that 
may be a reason why only a minority of drinkers 
develop pancreatitis.  
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