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1. General 

Somatostatin (SS), also known as somatotrophin 
release inhibitory factor, was originally described 
by Krulich (74) as a factor present in hypothalamic 
extracts capable of inhibiting growth hormone 
(GH) release by cultured rat anterior pituitary 
cells. A few years later, Brazeau (16) 
characterized this factor as a cyclic peptide 
consisting of 14 amino acids (SS14). Seven years 
later, a second bioactive form of SS, an NH2-
terminally extended somatostatin molecule, 
consisting of 28 amino acids (SS28), was isolated 
and characterized (109). Further research on this 
newly discovered SS-14 peptide indicated that it 
was present not only in the hypothalamus, but 
also throughout the central nervous system, in 
peripheral nerves and in other tissues including 
those of the gastrointestinal tract, pancreatic islets 
and thyroid. Interestingly, it was found that tissue 
targets of SS action were often the same tissues 
as those in which it was localized. In light of these 
findings, the concept arose that SS, besides 
acting effectively as an endocrine hormone, could 
be regionally limited as a neuroendocrine factor or 
in other tissues, as an autocrine or paracrine 
regulator (115). 
 

Somatostatin cDNAs from the anglerfish, catfish, 
rat, mouse and human have been isolated and 
sequenced (41, 42, 59, 90, 136).  In mammals, 
both SS-14 and SS-28 originate from an 
approximate 10.3 kDa prohormone called pre-
prosomatostatin (4, 9). Two more neuropeptides 
related to this pro-form  but of unknown hormonal 
role have been identified: one of 12 amino acids 
which is the N-terminal of SS-28 (SS-28 (1-12) (7) 
and the other peptide of 76 amino acids whose C-
terminal end is the 12 amino acids preceding the 
8 kDa SS-28 (1-12) (8). To process this 
somatostatin precursor, Morel described an 
enzyme named SS-28 convertase, present in the 
rat cortex and able to convert a 15 kDa precursor 
peptide into SS-28 (1-12) and SS-14 (19, 91). 
One year later, these same authors described an 
aminopeptidase II associated with the SS-28 
convertase that can liberate SS-14 (47). 
 
The SS-14 peptide has been characterized in 
different organs of many species including ovine 
and porcine hypothalamus (16, 128), pigeon 
(145), anglerfish (98) and rat (6) pancreas with all 
having the same primary structure. The hormone 
has been localized and quantified by RIA in many 
structures of the central nervous system, in the 
pituitary and in most organs of the gastrointestinal 
system (102). Within the GI tract and pancreas, D 
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cells containing SS have been demonstrated in 
the fundus and antral areas of the stomach and 
the islets of Langerhans, whereas a more 
scattered distribution has been shown in the small 
and large intestine (133). In the stomach of rat 
and human, the somatostatin immunoreactive 
cells have long, non-luminal processes extending 
from the epithelium along the basement 
membrane of the glands. These processes come 
into contact with many different glandular 
epithelial cells. In the stomach, many of these 
processes ended on G cells in the antrum as well 
as on the parietal cells in the oxyntic mucosa. In 
the pancreas, somatostatin cells are present in 
the neighbourhood of the other endocrine cells 
and the D cells processes are therefore thick and 
short (78). In the pancreas, soon after SS 
discovery in the hypothalamus, Orci had identified 
the pancreatic D cells containing somatostatin by 
immunoflurorescence in the pigeon (100). These 
somatostatin pancreatic D cells locations have 
also been confirmed in the six following different 
species: the calf, pig, horse, dog, rat and human 
by immunohistochemistry and image analysis by 
confocal microscopy (95). 
 
Studies on the ontogeny of the four pancreatic 
islet hormones have been limited to few 
mammalian species, namely the rat, human, 
sheep and pig (3, 79, 113, 165). In the rat (87), 
the pancreatic somatostatin contents increased 
constantly from fetal to adult age with values in 
the low thousands (4 to 8) early up to 71,000 in 
the adult. When expressed in ng/organ (46), 
similar variations were also observed in the rat 
pancreas. However, the percentage of 
somatostatin-positive cells in the rat islet remains 
quite stable over time, at 13, 10 days after birth 
down to 6 in the adult islets (86). 
 
Regulation of Somatostatin Secretion 
The proximity of the D-cells in the pancreatic 
islets and GI tract to their target cells favors a 
local or paracrine function and has fostered 
doubts regarding their hormonal status. To 
establish such a hormonal status, it had to be 

demonstrated that when SS is infused it produces 
a rise in plasma SLI levels comparable to 
physiological levels observed after a meal. In 
humans, doses of 31 and 61 pmol kg-1 h-1 SS-14 
produced increments in plasma SLI of 4 and 7 
pM, comparable to a value of 4 pM after a meal 
(53). In another study in humans, fasting SLI 
levels of 8 pg ml-1 in volunteers rose to 18 and 20 
pg ml-1 at 60 and 120 min, respectively, after a 
meal; this rise approximates that produced by 
infusing SS-14 at 2 µg h-1. Such data supports a 
hormonal role for somatostatin in man (168). 
Similar increases in plasma SLI were observed in 
dog after the intraduodenal instillation of a 20% 
liver meal (5 ml min-1). Such rises in pancreatic 
vein SLI were not reduced after truncal vagotomy 
or during atropine infusion (131). The individual 
dietary components, glucose, fat and casein 
hydrolysate instilled in the GI tract of 
anaesthetized dogs stimulated SLI release from 
the pancreas and stomach (130). Among the 
organs responsible for SLI released into dog 
plasma, under basal conditions, the pancreas is 
responsible for 521 pg/min-1 and the GI tract for 
8088 pg min-1, indicating a rather small 
contribution from the pancreas. In response to 
isoproterenol, a beta-adrenergic agonist, SLI 
output from the pancreas increases by 684 pg 
min-1 and that from the GI tract by 23,911 pg 
min-1, thus indicating that the pancreas was a 
minor source of circulating SLI (153). These data 
suggest that circulating plasma SLI levels should 
not be used as an index of secretory activity of the 
pancreatic D cells. 
 
Among the positive releasers of somatostatin in 
addition to the components of a normal diet, is the 
supradiaphragmatic vagal trunk which when 
stimulated at different frequencies of 1.5 up to 12 
cps, caused increases in portal SLI blood levels 
with a maximum release of 2524 pg-min ml-1 for 6 
cps (52). However, this rise happened 10 min 
after the end of stimulation suggesting it might not 
be a direct effect of vagal stimulation. Dissection 
of the results of the vagal nerve stimulation on 
blood SLI release seems to indicate that vagal 
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nerve stimulation increased pancreatic and 
extrapancreatic SLI in the dog. Non-muscarinic 
mechanisms likely mediate the vagally-induced 
extrapancreatic SS secretion, whereas pancreatic 
SLI responses are under both the muscarinic and 
non-muscarinic mechanisms, possibly peptidergic 
(1). Direct acetylcholine infusion at a dose of 0.5 
µg kg-1 min-1 for 10 min in the cranial 
pancreaticoduodenal artery of anesthetized dogs 
caused a prompt increase of plasma SLI levels in 
the cranial pancreaticoduodenal vein, an effect 
abolished by prior local infusion of atropine at a 
dose of 5 µg kg-1 min-1 (69). These data support a 
stimulating role of the parasympathetic nerves in 
the regulation of pancreatic SLI release. 
 
Besides control of by the adrenergic and 
muscarinic systems, the secretion of 
gastrointestinal SLI is also influenced by a 
number of gastrointestinal hormones. Exogenous 
cholecystokinin (CCK) has been reported to 
increase systemic levels of SLI (57,123). In the 
baboon, CCK-8 infusion for 5 min at 1, 2 and 4 µg 
kg-1 i.v., all resulted in significant elevations in 
peripheral plasma SLI from a basal level of 200 
pg ml-1 to 268, 265 and 263 pg ml-1, respectively 
(36). In isolated rat pancreatic islets, glucose at 
11.1 mM significantly enhanced somatostatin 
release in response to 10 nM CCK- 8 (166). In 
this same system, 11.1 mM glucose significantly 
increased SS secretion when CCK-8 reached 1 
nM in the medium. This relatively weak secretory 
effect of CCK-8 on somatostatin release is in line 
with data obtained from the infused dog pancreas 
(62). Such amounts of SLI released may not rule 
out a role for CCK on the pancreatic D cells but in 
vivo the major part of CCK-mediated SS release 
comes from the fundic mucosal cells (142) and 
other GI sources. In one study, bombesin 
perfused into the isolated canine pancreas did not 
affect somatostatin release (64). Using this same 
model, it was demonstrated that VIP infused at 50 
ng ml-1 for 9 min resulted in a 2-3 fold increase in 
SS release. In situ, VIP could operate through 
VIP-containing nerve fibers and endocrine cells 
(63). The Unger group also demonstrated that 

infusion of prostaglandin E2 in anesthetized dogs 
elicited a greater than two-fold rise in pancreatico-
duodenal vein SLI (132). Starvation was 
associated with reduced basal SS release from an 
isolated perfused rat pancreas from 33 pg ml-1 in 
the fed to 15 pg ml-1 in the 48-h fasted rat. 
However, when arginine-induced somatostatin 
response is expressed as the sum of increment 
above the basal level, SS secretion in 48-h fasted 
rats is significantly greater than that in the fed rats 
(134). Under similar conditions, it was shown that 
the decrease in basal SS was associated with an 
increased tissue level, thus suggesting the 
possibility of reduced secretion (135).  
 
In fasted states in the human (155) and dog (26), 
the GI tract exhibits motor activity called the 
interdigestive contractions or phase III of the 
interdigestive myoelectric complex. These 
contractions occur after a post-prandial interval 
and they are of fixed duration and occur at regular 
intervals. Somatostatin given at pharmacological 
doses inhibited the regular occurrence of the 
contraction in the stomach and upper intestine, 
but not in the lower intestine (101). In the dog, 
plasma SLI levels were higher during the gastric 
interdigestive contractions (GIC) and lowest at 60 
and 80 min after cessation of the GIC. This 
observed SLI increase can be obtained by 
exogenous motilin, a known stimulus of GIC when 
infused at a physiological dose of 0.1 µg kg-1 h-1 
during the period in which plasma SLI levels were 
low. These variations in plasma SLI 
concentrations seem to be involved in this 
regulation of GIC and suggest an interrelationship 
between motilin and somatostatin (2). 
 
Intracellular Mode of Action of 
Somatostatin 
Different types of action have been classically 
postulated to be involved in the transduction of 
the somatostatin message within the target cell. 
Among the first systems described was the 
decrease in cAMP production through inhibition of 
adenylate cyclase (21). Such an adenylate 
cyclase inhibition led to inhibition of cyclic AMP-
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dependent protein kinase activity (22). Besides its 
effect on adenylate cyclase, somatostatin from 
0.01 to 1 µM increased the activity of 
phosphodiesterase (PDE) in a GH4C1 cell 
homogenate only when Ca2+ and calmodulin were 
added to the medium. Such an effect on PDE 
activity can thus reinforce SS-14 inhibitory effects 
on the cyclase (154). It was also reported that 
somatostatin can enhance the activity of 
guanylate cyclase and thus the production of 
cGMP. This effect was seen not only in the 
anterior pituitary but also in the pancreas, 
stomach, liver and small intestine at physiological 
concentrations with an inhibitory effect at high 
concentrations (157). 
 
Besides its action on the adenylate cyclase 
system, somatostatin has been shown to be 
involved in the inhibition of Ca2+ cellular influx 
(116) and activation of a phosphoprotein 
phosphatase (118). With Ca2+ mobilisation known 
to be mediated by activation of membrane 
phosphoinositide (InsPs) turnover (85), 
somatostatin was therefore suspected to inhibit 
PTdinositol 3-kinase to control stimulated 
exocrine and endocrine secretions as well as cell 
growth. In rat pancreatic acini, somatostatin 10 
nM inhibited basal InsP1, InsP2 and InsP3 
production respectively, as well as bombesin-
stimulated InsP3 formation (82). In some 
instances, the effects of somatostatin on its target 
cells may depend on the type of somatostatin 
receptor present on these cells. Indeed, instead of 
observing the usual inhibition, occupation of the 
somatostatin SST5 receptor by SS-14 and SS-28 
on Chinese hamster ovary K1 cells activated 
phosphoinositide metabolism (161). Activation of 
phosphoprotein phosphatase by somatostatin was 
also observed in the liver, pancreas, gastric 
fundus, small intestine and colon, suggesting that 
protein dephosphorylation could account for some 
of the physiological effects of somatostatin in the 
digestive tract (117). This effect of somatostatin 
on activation of a phosphoprotein phosphatase 
was later challenged at least in the liver since 
somatostatin dose-dependently (1 to 16 µg ml-1) 

inhibited this enzyme partially purified from rat 
liver with a maximal inhibition of 60% at the 
highest dose of 16 µg ml-1 (154). It is thus 
possible that inhibition of the phosphatase activity 
occurs with occupation of the high affinity sites of 
the receptor while binding to the low affinity sites 
would result in its activation (117). 
 
The cellular mechanisms by which hormones and 
growth factors trigger their mitogenic or 
antimitogenic signals are much more understood 
these days than they were years ago. Among the 
early events stimulated by mitogenic agents are 
activation of MAP kinases (24), rapid and 
transient expression of the proto-oncogenes c-fos, 
c-jun, c-myc and H-ras (18), activation of tyrosine 
kinase, phosphatidylinositol 3-kinase, 
phospholipase D (122) and decrease in tyrosine 
phosphatase (121). In MIN6 cells, growth was 
significantly inhibited by somatostatin 100 nM and 
1 µM with early decreases in MAP kinase activity 
and c-fos expression (164). In the neuroblastoma 
cell line (SY5Y), BIM23014, a somatostatin 
analogue, at 1 nM, completely inhibited the MAP 
kinase activation induced by both IGF-1 and 
carbachol (24). In rats, in response to iv infused 
caerulein, particulate tyrosine kinase and 
phosphatase (PTase) exhibited sustained 
increases. SMS alone at 5 µg kg-1 h-1 caused 
transient increases in partriculate and crude 
cytosolic PTase activites during its first hour of 
infusion with concomitant decreases in particulate 
and crude cytosolic TRK activities. The transient 
stimulatory effect of SMS on PTase activity may 
suggest a role in the early event associated with 
negative control of proliferation (121). In rats with 
pancreatic juice diverted, the increases in 
membrane tyrosine kinase, phospholipase D and 
PTdinositol 3-kinase activities were all inhibited by 
SMS infused at 5 µg kg-1 h-1; a similar inhibition 
was observed using pancreatic acini. These data 
identified three important enzymes involved in the 
growth control of the pancreas, all inhibited by 
somatostatin (122). 
 
Actions of Somatostatin 
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In order to understand how somatostatin-14 and -
28 affect their numerous target organs, one has to 
know that these two hormones operate through 
six different receptors, all part of a family of G-
protein coupled receptors: SSTR1 to 5 with the 
SSTR2 subtype existing as SSTR2a and SSTR2b 
(103,104). Even though somatostatin-28 binds to 
each of the SSTR-14 receptors with less affinity 
than SS-14, a specific SS-28 receptor was cloned 
from a rat brian cDNA library (88). With a half-life 
of about 1.88 min for SS-14 determined in human 
plasma by RIA, it became important to synthesize 
analogs of longer stability for use as clinical tools 
for humans and animals (11). Such analogs were 
indeed synthesized and are presented in Table 1 
(104). 
 
Because of its topographical distribution in the 
organism, somatostatin is capable to exert its 
different effects in various ways. This peptide can 
act as a neurotransmitter and/or neuromodulator 
via its presence in or release from peptidergic or 
adrenergic nerve endings (60,61). The 
accumulation of somatostatin containing D cells at 
various levels within the gastrointestinal tract and 
pancreas provides an ideal basis for regulatory 
functions in digestive, absorptive and metabolic 

events. Somatostatin can therefore affect the cells 
located in close vicinity to the D-cells in some 
organs or be released into the circulation and thus 
acts as an endocrine hormone. 
When infused iv, somatostatin can be a potent 
inhibitor of ACTH, STH and TSH release 
(10,34,138), gastric acid secretion (12), gastric 
emptying (13), duodenal motility (14), pepsin 
secretion (49), the release of gastrin (12), motilin 
(13), secretin (55), GIP (107), CCK (129), GLI 
(125), gallbladder contraction (27), the absorption 
of glucose (159), triglycerides (108) and amino 
acids (48) and interfere with splanchnic blood 
blow (68). Release of the pancreatic endocrine 
hormones has also been inhibited by exogenous 
somatostatin: insulin (44), glucagon (45) and 
pancreatic polypeptide (38). 
 
2. Effects of Somatostatin on the 
Pancreas 

In vivo studies 
The interdigestive pancreatic secretion in dogs 
(149) and humans (81) was inhibited by 
somatostatin and its analog octreotide (SMS 201-
995).
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The observation that somatostatin 
immunoneutralization increased basal volume and 
amylase output in an isolated rat pancreas model, 
suggests an intrapancreatic source of 
somatostatin. This pancreatic somatostatin could 
therefore cause a tonical inhibition of exocrine 
pancreatic secretion (97). In conscious rats with 
bile and pancreatic secretions returned to the 
intestine, iv somatostatin (5 µg kg-1 h-1) inhibited 
basal pancreatic protein and fluid secretion by 84 
and 64%, respectively; addition of atropine ip (500 
µg kg-1 h-1) did not cause further inhibition (51). In 
anesthetized rats, basal secretion of amylase was 
significantly inhibited by an infusion of 
somatostatin at a relatively high dose of 100 µg 
100 g-1 h-1. However, when given as a bolus 
injection of 50 µg 100 g-1 BW, amylase release 
increased fourfold for 20 min (39). In a previous 
study (25), somatostatin given at doses of 0.4 to 
25 µg kg-1 h-1 to conscious fistula rats resulted in 
dose-dependent decreases in basal flow, 
bicarbonate and protein releases. At the highest 
doses, protein output was reduced by 80%, 
bicarbonate by 63% and flow by 42%. In urethane 
anesthetized rats, an initial increase in all 
pancreatic parameters was observed in the first 

two minutes, followed by a 30 to 40% decrease in 
protein output. In such conditions, somatostatin 
had to reach the dose of 100 µg kg-1 h-1 to affect 
basal bicarbonate release. These data on basal 
pancreatic secretion of fluid and proteins indicate 
that the inhibitory effect of somatostatin seems 
species specific and sensitive to anesthesia, as 
previously shown (17). When rats were infused 
intraduodenally with SS-14 at doses from 12 to 96 
µg kg-1 h-1, basal total volume and protein outputs 
were not affected; these results could indicate that 
luminal duodenal somatostatin does not influence 
basal pancreatic secretion directly or through 
basal release of CCK and secretin (126). Contrary 
to the rat, the iv infusion of SS-28 at 400 ng kg-1 h-

1 totally inhibited basal fluid and protein secretion 
in the conscious dog (147). Also in dogs prepared 
with gastric and pancreatic fistulae, somatostatin-
14 at 2.5 µg kg-1 h-1 inhibited basal volume and 
protein outputs by more than 90% (146). 
In humans, pancreatic stimulation by 
intraduodenal administration of tryptophan or a 
mixture of amino acids was attenuated by 
exogenous SS-28 (58). In other studies in man, 
octreotide inhibited postprandial pancreatic 
enzyme secretion (81). In the dog, SS-14 given as 
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iv bolus at 3.5 µg kg-1 followed by infusion at 3.5 
µg kg-1 h-1 caused significant reductions of the 
duodenal activities of trypsin and amylase during 
a test meal stimulation (70). In the rat, octreotide 
significantly inhibited pancreatic volume, 
bicarbonate, amylase and serum levels of secretin 
and CCK in response to intraduodenal oleic acid, 
a CCK releaser (137). 
 
In healthy volunteers (30), pure pancreatic juice 
was obtained by endoscopic cannulation of the 
main pancreatic duct. In response to synthetic 
secretin (0.06 CU kg-1 h-1), bicarbonate 
concentration in pancreatic juice reached levels of 
117 µEq ml-1 after 10 min and a juice flow of 7.3 
ml/5 min after 15 min of secretin infusion. SS-14 
led to a decrease of 47% in pancreatic flow rate 
after 10 min and of 67% after 15 min. Bicarbonate 
and protein concentrations in pancreatic juice 
showed only a tendency to decrease at the 
somatostatin dose of 5 µg kg-1 h-1. Also in 
humans, pancreatic enzyme secretion, but not 
bicarbonate secretion, stimulated by secretin (250 
ng kg-1/20 min) and caerulein (25 ng kg-1/20 min) 
was inhibited by SMS 201-995 in a dose-
independent manner (73). In conscious dogs 
(147), secretion of fluid and bicarbonate 
stimulated by secretin (1 CU kg-1 h-1) were slightly 
affected by larger doses of SS-28 (400 ng kg-1 h-

1). At the same dose, protein output stimulated by 
caerulein was significantly inhibited. In 
anesthetized rats, linear somatostatin-14 given at 
100 µg/100 g-1 h-1 caused a strong inhibition of 
pancreatic amylase and trypsin releases 
stimulated by 3 IVY dog units/100 g-1 h-1 of CCK 
with a rapid rebound of these secretions once the 
somatostatin infusion was terminated (39). In 
conscious rats with pancreatic juice diversion (51) 
which caused strong increases in protein and fluid 
secretions, all five doses of infused octreotide 
(5,20,80,320 and 1280 ng kg-1 h-1) significantly 
inhibited both protein and fluid secretion with IC50 
of 40 and 60 ng kg-1 h-1, respectively. Maximal 
protein and fluid inhibition reached 90% and 75% 
respectively, at the dose of 1.28 µg kg-1 h-1. SS-14 
when compared to its analog octreotide had an 

IC50 of 0.7 µg kg-1 h-1 for protein secretion and 1.2 
µg kg-1 h-1 for fluid secretion, with a maximal 
inhibitory effect obtained at 25 µg kg-1 h-1 for both 
protein and fluid secretion. These data indicate 
that octreotide is 20 times more potent than SS-
14 in inhibiting pancreatic protein and volume 
secretion stimulated by pancreatic juice diversion. 
 
In vitro studies 
Pancreatic enzyme and fluid secretion in vivo is 
the sum of numerous complex physiological 
processes that include interplay of endocrine and 
paracrine hormones as well as neurotransmitter 
stimulation and release. Because of these 
multiple interactions, it is often difficult to assess 
whether a compound that inhibits pancreatic 
secretion in vivo affects acinar and ductal cell 
functions directly or alters the release of 
secretagogues. Therefore, the isolated perfused 
pancreas, the isolated acinar and ductal cell 
preparations and cell cultures of both cell types 
can give answers to some of these questions. 
 
Rat pancreatic acinar cells possess receptors 
specific for somatostatin-14 and 28 (124,166) 
which remain present after the cell preparations 
(40). It has also been reported that in the isolated 
perfused dog pancreas, the gland can take up to 
50-80% of somatostatin perfused over a 
concentration range of 20 to 4000 pg ml-1 
compared to less than 21% of insulin or glucagon 
(71). This observation was later confirmed with 
extraction of SS-14 by the in situ dog pancreas 
averaging greater than 50% compared to less 
than 17% for glucagon (152). All these 
observations let us believe that somatostatin 
should be able to inhibit directly neural or 
hormonal stimulated pancreatic enzyme secretion 
in vitro using the above cited cell preparations. 
 
In spite of many studies, the inhibitory effect of 
SS-14 and SS-28 on stimulated enzyme release 
from isolated pancreatic acini is still controversial. 
To understand some of these opposite results, it 
may help to make a distinction between effect of 
SS on stimulation where the agonist such as VIP 
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works through cAMP, where the SS inhibits and 
agonists such as CCK where some investigators 
observed an inhibitory effect and others not. In 
perfused guinea pig acini, the kinetic profile of 
amylase release in response to VIP was 
significantly decreased by SS (100 nM) (140). On 
the other hand, octreotide (100 nM) significantly 
inhibited synergistic amylase release stimulated 
by secretin + CCK-8 or by VIP + CCK-8 (65). 
Somatostatin also inhibited the effect of cAMP on 
calcium-induced amylase secretion from rat 
pancreatic acini by shifting the dose-response 
curve to the right (99), another example of SS 
acting through the cAMP pathway. 
 
Many other studies however clearly show that 
somatostatin has no inhibitory effects on the 
exocrine pancreas in vitro, whether it be on the 
isolated perfused pancreas, the isolated acini or 
the isolated lobule preparations in which CCK was 
the stimulus (65,96,99,139,158). In isolated rat 
pancreas (43), exogenous insulin (10 mU ml-1) 
significantly potentiated CCK and carbachol-
stimulated amylase secretion, a potentiation 
significantly inhibited by SS. The lack of a direct 
inhibitory effect of SS was also observed in 
isolated canine parietal cells (106). Indeed, SS at 
1 µM failed to inhibit the gastric secretory 
response to histamine, methacholine and 
pentagastrin, supporting some of the above-
mentioned data. Interestingly, SS-28 at the high 
concentration of 10 µM was able to stimulate 
amylase release from guinea pig pancreatic acini 
to about 68% of that stimulated by 100 pM 
caerulein. A maximal secretory response identical 
to that initiated by caerulein was also obtained by 
two SS-28 analogs, Nat S1-28 and [Nle8]SS28. 
Under these conditions, SS-14 had no stimulatory 
effect (33). As an explanation for this secretory 
effect of SS-28 on acini, it was proposed that SS-
28 can interact with the CCK receptor at high 
concentrations (34), an effect inhibited by 
DBcGMP, a CCK receptor antagonist (105). On 
the other hand, the failure of SS-14 to inhibit 
stimulated enzyme secretion from isolated acini 
may result in the release into the incubation 

medium of an active protease, first observed in 
the secreted pancreatic juice, and able to degrade 
SS-14 (127). This serine protease was purified to 
homogeneity from rat pure pancreatic juice. With 
a MW of approximately 29 kDa, it corresponds to 
the rat pancreatic elastase II. Therefore, if 
secreted into the incubation medium, it would 
degrade SS-14 and prevent any of its inhibitory 
effects and thus partly explain why SS-14 was 
unable to show its inhibitory effects on enzyme 
release in vitro (151). It may also affect the 
secretory response to SS-28 at lower 
concentrations in the incubation medium. Another 
possibility could be that cell calcium-mobilizing 
agents decrease the affinity of acinar cell 
somatostatin receptors for somatostatin (33). 
 
Effects on Growth 
Normal growth of an organism results in a 
complex balance of the hormones involved, such 
as growth hormone, insulin and thyroid hormones. 
Since somatostatin can inhibit release of many 
hormones, its neutralisation should stimulate their 
secretion and thus increase growth. This 
approach of auto-immunisation against 
somatostatin to stimulate growth has been tested 
in lambs. When significant antibody titers were 
obtained, the rate of weight gain was greater in 
SS immunized animals and accompanied by 
increased height. In these immunized lambs, 
there was a greater growth hormone response to 
arginine stimulation as well as basal higher blood 
levels of somatomedin (143). These data were 
later confirmed also in this species (75). When 
given to rats implanted subcutaneously with an 
Alzet mini-pump, somatostatin delivered at 1.5 µg 
h-1 for 14 days had no effect on their weight gain. 
However, the infusion of a somatostatin 
antagonist [cycloAhep-Phe-D-Trp-Lys-Thr(Bzl)] 
led to a significant increase in weight gain over 
control (144). 
 
In the rat, the daily injection of somatostatin-14 at 
390 µg kg-1 day-1 in gelatin for three weeks had no 
effect on body weight but lowered parietal and 
peptic cell densities per cubic millimeter 
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compared to controls. However, it antagonized 
the growth promoting effect of exogenous (130 µg 
kg-1 day-1) and endogenous gastrin release 
following transposition of the antrum onto the 
colon, causing hypergastrinemia. In these antrum-
translocated animals, the increased pancreatic 
weight was significantly reduced by somatostatin 
(400 µg kg-1 day-1) for 3 weeks (80). Over a 5-day 
period, somatostatin-14 s.c. in gelatin at doses of 
11, 33 or 100 µg kg-1 every 8 h caused significant 
decreases of pancreatic amylase, chymotrypsin 
and protein concentrations and total DNA content 
only at the two highest doses without any effect 
on total pancreatic weight. However, rates of 
protein, RNA and DNA synthesis were 
significantly reduced immediately after each 
somatostatin injection over 24 h (92). 
Somatostatin-14, also given s.c. in gelatin at a 
dose of 600 µg kg-1, three times a day for 2 and 4 
days, significantly reduced the trophic effects of 
caerulein (1 µg kg-1, thrice a day) with a strong 
effect on total DNA content. Interestingly, 
immunoneutralization against SS-14 significantly 
increased all growth parameters studied above 
those observed in response to caerulein (93). 
Similar inhibitory effects were observed with 
prolonged administration of long-acting 
somatostatin, SMS 201-995 (54). Pancreatic juice 
diversion in the rat causes significant releases of 
endogenous CCK resulting in increased 
pancreatic growth (89). Using this procedure of 
bile-pancreatic juice diversion, such a technique 
applied 8 h day-1 for 4 days led to significant 
increases in pancreatic weight and serum CCK; 
both effects were significantly reduced by SMS 
201-995 infused at a dose of 5 µg kg-1 h-1 and by 
L-364,718, a CCK-1 receptor antagonist, given at 
0.5 mg kg-1 h-1. Under these conditions, both SMS 
and L-364,718 were equipotent in reducing 
pancreas growth while SMS was the only 
antagonist able to reduce to a basal level 
endogenous CCK liberated by pancreatic-bile 
diversion (119). These data indicate that 
somatostatin and analogues can reduce 
pancreatic growth stimulated by exogenous and 
endogenously released CCK. Finally, it was 

observed that somatostatin (SMS) infused at a 
rate of 5 µg kg-1 h-1 for 2 days was able to totally 
prevent 70% casein-induced increases in 
pancreatic weight and total RNA and DNA 
contents (94). This is another evidence that 
somatostatin can control induced pancreatic 
growth stimulated by endogenous CCK released 
by a diet rich in proteins (50). Given alone as an iv 
infusion for 7 days at a dose of 5 µg kg-1 h-1, SMS 
201-995 caused significant reductions in 
pancreatic and intestinal weights accompanied by 
decreases in total DNA and RNA in both organs. 
Plasma CCK and IGF-1 were reduced whereas 
total pancreatic IGF-1 content was increased 
(120). Besides endogenous CCK, some 
observations suggest the possible involvement of 
IGF-1 in the process of positive growth control in 
the intestine and pancreas. Indeed, this growth 
factor is present in the intestine (28) and pancreas 
(56) and specific receptors were documented on 
cells of these organs (76,162); paracrine or 
autocrine mechanisms of action have been 
postulated (29). Somatostatin may act on the 
control of these two organs through an inhibition 
of IGF-1 release accompanied by a similar effect 
on intestinal CCK. 
 
Effects of Somatostatin on Pancreatic 
Tumors 
Somatostatin has been characterized as the 
“universal off switch” because it inhibits most of 
the organ and cellular functions it has been 
associated with. A role for somatostatin and its 
analogues in pancreatic cancer treatments has 
been suggested because these molecules initially 
provided positive non-toxic adjuvant therapy. 
 
In the Golden Syrian hamster implanted 
subcutaneously with WD ductal pancreatic 
adenocarcinoma cells, a 21-day chronic treatment 
with the somatostatin analogue (L-5-Br-Trp8)SS at 
a dose of 20 µg b.i.d., diminished tumor weight by 
44% and tumor volume by 22% (114).  
Somatostatin and its analogue RC-160 have also 
been shown to inhibit preneoplastic changes and 
decrease the incidence of tumors in hamsters 
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exposed to the pancreatic carcinogen BOP; these 
treatments caused increases in the number of 
apoptotic tumor cells (150). In another study, the 
number of somatostatin receptors increased on 
the tumor cells after RC-160 treatment (35). 
Growth of MIAPaCa-2 cells implanted s.c. in nude 
mice was dose-dependently inhibited by twice 
daily injections of octreotide at 250 and 2500 µg 
kg-1 (160). Using another mode of drug delivery, 
microcapsules, RC-160 delivered at 1250 µg kg-1 
d-1 significantly inhibited growth of the MIAPaCa-2 
tumors in nude mice (110). Failure of 
somatostatin or its analogues to inhibit tumor 
growth could have resulted from the absence of 
SS receptor as shown in the human pancreatic 
cancer cells PGER which are irresponsive to SMS 
201-995 (141). In MIAPaCa-2 and PANC-1 cells 
grown in DMEM containing 10% fetal calf serum, 
1 µM SS-14 and SMS 201-995 inhibited growth of 
the PANC-1 cells with activation of the tyrosine 
phosphatase SHP-1. On the contrary, SS and its 
analogue caused growth of the MIAPaCa-2 cell 
and this growth effect may have resulted from the 
absence of SHP-1 in these cells (31). In cells 
responding to somatostatin, it was shown 
previously that SHP-1 co-purified with the 
somatostatin receptor (167).  A similar growth-
stimulating effect of SMS was observed in BON 
cells (human pancreatic carcinoid cells) at the 
dose of 1 nM and 100 nM; this growth effect was 
accompanied by significant reductions in the cells 
cAMP contents without affecting PI hydrolysis 
(66). 
 
Most clinical trials of somatostatin analogues in 
the adjuvant treatment of pancreatic cancer have 
failed to demonstrate a response. No antitumor 
effect was observed in 14 patients with metastatic 
pancreatic cancer with three daily s.c. injections of 
100-200 µg of SMS for 7 weeks (72). In another 
study, nineteen patients with advanced exocrine 
pancreatic carcinoma were given the somatostatin 
analog BIM23014 from 250 µg to 1 mg day-1 for 2 
months. Within this group, one patient had a 
partial response, 6 had stable diseases, and 
eleven had progressive disease (20). From 

studies performed on different pancreatic cancer 
cells and the various responses obtained on their 
growth, it seems that one key to success in the 
critical battle against pancreatic cancer is the 
expression of specific somatostatin receptors and 
use of the specific analog (37). The properties of 
the five cloned subtypes of human somatostatin 
receptors and the established, probable and 
unestablished indications for the use of 
somatostatin analogues have been summarized 
in reference 77. 
 
Clinical Usage of Somatostatin 
Clinically, octreotide has been used in treatment 
of acute pancreatitis but there was no unanimous 
benefit confirmed. In one trial (111), somatostatin 
was given in an initial bolus dose of 250 µg 
followed by 250 µg h-1 as a continuous infusion; 
the treatment in 9 out of 12 patients with acute 
pancreatitis reversed amylasemia and brought 
clinical improvement but failed to show any 
reduction in mortality rates. Somatostatin remains 
however an effective treatment for established 
local complication of acute pancreatitis, such as 
pancreatic fistulae and pseudocysts (112). In one 
study, patients with metastatic pancreatic 
endocrine tumours were treated initially with 50 µg  
s.c. octreotide every 12 h and later (6-16 months) 
the dose was increased to 500 µg every 8 h. 
Some patients did not respond to treatment while 
in others it was effective; symptoms improved but 
eventually they recurred and all patients died 
once the resistance phase of their illness had 
been reached (163). These data indicate that 
somatostatin is not the ideal treatment for 
pancreatitis but may be useful to treat local 
complications of the disease. SMS, however, has 
been shown to be very efficient in eliminating 
pancreatic diarrhea and allowing correction of 
dehydration and acidosis. Its effect resulted in the 
marked reduction in plasma concentrations of VIP 
(84). 
 
3. Tools for the study of 
somatostatin 
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a) Peptide 
Somatostatin-14 and -28 are commercially 
available. The major agonist used in vivo is 
octreotide (SMS 201-995) and the others are: RC-
160, BIM-23014, BIM-23056, BIM-23027 and L-
362,855. Among the BIM series, BIM-23056 acts 
as an agonist on the SST-3 receptor as well as an 
antagonist on the SST-5 receptor (161). The 
chemical structures of these molecules are 
presented in Table 1. 
 
b) Antibodies and assays 
Antibodies to somatostatin -14, -28, SMS 201-995 
and RC-160 have been developed in many 
laboratories. As examples, Guillemin has set up 
an RIA using a sheep antiserum BARBAR-78; this 
antiserum was raised against synthetic SS-14 and 
it cross-reacts with synthetic ovine SS-28 in 
equimolar ratio (15). A specific antiserum against 
SS-28 was also developed (67) and RIAs for SMS 

201-995 (5) and RC-160 (83) have also been 
established. 
 
c) Experimental models 
Most of the physiological studies performed in 
humans were done in male and female healthy 
volunteers (30). Among the experimental animals, 
studies were mostly performed in conscious dogs 
with gastric and pancreatic fistulae (146,147), in 
conscious rats with bile-pancreatic juice diverted 
(25,127) and in anesthetized rats (39). For chronic 
effect of somatostatin on the pancreas, rats were 
treated daily with s.c. injections of somatostatin 
(92). In vitro studies were performed usually with 
freshly prepared pancreatic acini, isolated lobules 
or isolated perfused pancreas from rat, mouse or 
guinea pig (65, 96,139,158). In Table 2, some 
data on animal species used, doses or 
concentrations of somatostatin and analogues 
given and effects are presented. 
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