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1. Introduction 

Acute pancreatitis is an extremely painful and life-

threatening inflammatory disease of the exocrine 

pancreas (57, 100). A sobering point for both 

clinicians and researchers is that the treatment of 

acute pancreatitis remains largely supportive. 

Further, there is a lack of therapies that target 

primary mechanisms underlying the initiation or 

propagation of the disease. Thus reliable, 

relevant, and, importantly, convenient 

experimental animal models that resemble the 

human disease are crucial to developing an 

understanding of the pathobiology of pancreatitis 

(34, 35, 104, 105, 108, 110). In this chapter, we 

will review the current in vitro (i.e. ex vivo) models 

that serve as surrogates for experimental acute 

pancreatitis. We will specifically discuss: (1) the 

standard process of preparing pancreatic acinar 

cells or pancreatic tissue components; (2) assays 

for assessing in vitro injury and inflammatory 

precursors; and (3) the array of non-alcoholic and 

alcoholic in vitro models of pancreatitis. 

 

The pancreatic acinar cell is the main 

parenchymal cell of the pancreas. It comprises 

roughly 90% of the pancreatic parenchyma, and 

functions to synthesize and secrete digestive 

enzymes in response to hormonal stimulation (24, 

30, 36, 48).  

 

The acinar cell is considered the initiating site of 

pancreatic injury, leading to pancreatitis, and thus 

in vitro preparations of acinar cells have been 

used for decades to define the molecular events 

that occur during the early stages of the disease 

(1, 49, 134). The advantage of these models are 

that they provide a high throughput (or at least 

rapid) system to examine whether cellular 

pathways or molecular targets modulate injurious 

in vitro corollaries to in vivo events during 

pancreatitis, including aberrant Ca2+ signaling, 

activation of digestive proteases, NF-kB 

activation, mitochondrial dysfunction, and cell 

death through apoptosis or necrosis. A 

disadvantage is that these systems lack the full 

inflammatory or systemic components and, 

therefore, subsequent in vivo validation of in vitro 

findings is crucial. 

 

Recent use of adenovirus-mediated gene transfer 

has enabled researchers to manipulate acinar cell 

function in the presence of pathological agents 

(89, 146). Another powerful genetic approach for 

studying pancreatitis in vitro is to isolate acinar 

cells from the pancreas of gene-targeted knockout 

or transgenic mice (43, 51, 82, 144). 
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2. Acinar Cell Preparations 

Single, Double, and Large Cluster Acinar 

Cell Preparations 

Isolated pancreatic acini and acinar cells can be 

prepared from rat, mouse, and guinea pig 

pancreas using a collagenase digestion protocol 

(13, 93, 101, 116, 140). Depending on the 

stringency of the isolation protocol, single, double, 

and large cluster acinar cells are obtained (Figure 

1A-B). The greatest determinant in the stringency 

of acinar cell preparation is the concentration and 

duration of collagenase digestion. Nonetheless, 

there are several collagenases to choose from, 

including Sigma Type II (142), IV or V (80), and 

Worthington type IV (29). A newer collagenase P 

from Roche can be used to prepare smaller acini 

for electrophysiology (75, 147). Liberase (Roche) 

is another option for acinar cell isolation. Some 

authorities use collagenase NB1 (Serva) to 

perform human islet cell isolation, which also 

yields acinar cells (and duct cells) for 

experimental use (12, 63). Acinar size and 

integrity are highly dependent on the type of 

collagenase used and the application of shearing 

forces (99). After digestion of pancreatic tissue, 

acinar cells can be purified away from ducts, 

islets, and blood vessels by filtration and bovine 

serum albumin (BSA) density sedimentation. 

Following this method, acini can be maintained in 

culture for 24-48 hours but start to lose their 

polarity and secretory capability after several 

hours.  

 

Lobules 

To assess the direct as well as indirect effects of 

agonists on acinar cell secretion, in vitro 

preparations should ideally contain not only acinar 

cells but also nerves and islets. 

 

Figure 1. In vitro preparations of the pancreas include (A) single acinar cell preparations, (B) acini, (C) 

pancreatic lobules, (D) pancreatic organoids, or (E) pancreatic slices. Adapted from (99), (93), (113), (10), 

(45), respectively. Republished with permission.  
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For this reason pancreatic lobules are useful 

(Figure 1C). In the original description by Scheele 

and colleagues, pancreatic lobules were spread 

apart by injecting Krebs-Ringer bicarbonate (KRB) 

buffer into the loose connective tissue of the 

pancreas and then individually excised by micro-

dissection under a stereomicroscope (27, 113). 

This procedure minimizes damage to acinar cells 

since most of the surgical trauma is limited to 

ducts and vessels. The excised lobules preserve 

the overall acinar architecture of the tissue and 

their small size and allows for easy penetration of 

oxygen and solutes from the incubation medium. 

Following this method, lobules can be maintained 

for several hours in culture (6, 7, 66, 114).  

 

Organoids 

The most recent advance in studying pancreatic 

physiology in vitro involves the generation of 

pancreatic organoids (10, 46) (Figure 1D). By 

definition, organoids are three-dimensional organ 

buds which arise from stem cells. With the use of 

growth factors, stem cell populations used to 

develop organoids can be coaxed into forming 

balls of terminally differentiated cells that self-

organize into distinctive layers. As described by 

Boj and colleagues, pancreatic organoids can be 

rapidly generated from resected pancreatic 

tumors and biopsies following manual digestion 

with collagenase II and seeded in growth factor-

reduced Matrigel (10). Conditioning the medium 

with the growth factor R-spondin promotes a 

predominantly duct cell population. These 

pancreatic organoids survive cryopreservation 

and exhibit ductal- and disease stage-specific 

characteristics. Further, pancreatic organoids 

from wild-type mice accurately recapitulated 

physiologically relevant aspects of disease 

progression in vitro. Following orthotopic 

transplantation, pancreatic organoids were 

capable of regenerating normal ductal 

architectures. This technique is particularly useful 

for studying duct cell phenotypes (10). 

 

 

 

Pancreas Slice 

To preserve the integrity of the pancreatic milieu 

for at least two days in culture, the novel method 

of culturing pancreas slices is useful (44, 45) 

(Figure 1E). This technique allows for both in situ 

imaging of cellular events relevant to pancreatitis 

and genetic manipulation. To obtain a pancreas 

slice, Gaisano and colleagues gently infused a 

low melting agarose gel into the pancreatic duct of 

an anesthetized mouse via a transduodenal 

puncture and cannulation of the common bile duct 

(44, 45). The pancreas was then excised and 

trimmed. The agarose renders the pancreas firm 

enough to then slice, using a vibratome, at a 

thickness of 80-140 µm. Moreover, agarose is 

porous and thus provides free exchange of tissue 

with buffer, ensuring optimal health in culture for 

up to two days. Further, this technique permits 

transfection of cells as well as real time imaging.  

 

Acinar cell lines 

The most commonly used cell line to study the 

exocrine pancreas is the rat pancreatic acinar cell 

line AR42J (Figure 2). These cells were derived 

from a transplantable tumor for the rat exocrine 

pancreas. The AR42J cells differ from primary 

pancreatic acinar cells in at least two ways: (1) 

they proliferate rapidly; and (2) although they 

synthesize, store, and secrete digestive enzymes, 

they express atypical receptors and conduct 

atypical inositol phosphate metabolism and 

cytoskeleton rearrangement (33). 

Dexamethasone favors their differentiation toward 

the acinar phenotype, including agonist-stimulated 

Ca2+ signaling (5, 15, 67, 124). The cell line is 

incubated for 48-72 hours in culture medium 

supplemented with 100 nM dexamethasone prior 

to experimental treatment or induction. AR42J 

cells are easily cultured in a RPMI 1640 medium 

supplemented with glutamine, FBS, and 

antibiotics at 370C under a humidified condition of 

95% air and 5% CO2. AR42J cells can be 

routinely plated at a density of 105 cells/ml in 75 

cm2 flasks and cultured for 7-10 days.  
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Figure 2. Morphological characteristics of the AR42J acinar cell line. AR42J cells primed with 

dexamethasone (100 nM) and visualized by (A) light microscopy using a 20X objective or (B) electron microscopy 

(arrow heads point to zymogen granules). Adapted from (33) and (20), respectively. Republished with permission.  

 

A less common derived acinar cell line is the 266-

6. This cell line is derived from young adult mouse 

tumors induced with elastase I/SV-40 T-antigen 

fusion gene. Robert Hammer first described the 

line in 1985 (97). 266-6 cells retain a partially 

differentiated phenotype and express several 

digestive enzymes. They respond to carbachol 

and cholecystokinin (CCK) but do not respond to 

substance P, secretin, or vasoactive intestinal 

peptide (VIP). The culture method is the same as 

that described for AR42J cells, except that there 

is no dexamethasone priming. 

 

3. Assays for In Vitro Surrogates of 

Pancreatitis  

Ca2+ Signaling 

Pancreatic acinar cells have served as an 

epithelial cell model for examining Ca2+ signaling 

for decades (Figure 3). Consistent with the 

polarized nature of acinar cells, Ca2+ signals in  

 

these cells exhibit highly organized spatial 

characteristics (103). Most agonist-stimulated 

Ca2+ signals in acinar cells initiate in the apical 

region and propagate to the basolateral region 

(31, 48, 52). Single cell imaging of Ca2+ signals 

involves the use of fluorescent Ca2+ dyes and 

confocal microscopy. A number of Ca2+ sensing 

dyes are available, depending on the needs of the 

researcher (37, 77, 94, 127). The simplest dyes 

exhibit signature fluorescent properties upon 

binding Ca2+; they are excited by a certain 

wavelength of light and emit photons at a certain 

emission wavelength (i.e. Fluo-3AM, Fluo-4AM). 

Ratiometric dyes (i.e. Fura-2), on the other hand, 

exhibit distinct spectral shifts upon Ca2+ binding, 

such that the Ca2+-free form is excited maximally 

at 380 nm while the Ca2+ bound form is excited 

maximally at 340 nm. Both states emit peak 

fluorescence at 510 nm.  
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Figure 3. Typical Ca2+ transients upon stimulation with supraphysiologic concentrations of carbachol (1 

μM) or physiologic concentrations of caerulein (10 pM). Changes in whole cell Ca2+ were measured by time-

lapse confocal microscopy using the Ca2+ dye Fluo-4AM (5 μM). Images are represented in pseudocolor with a 

color scale. (A) From left to right; bright field view of an acinus labeled at the apical and basolateral regions of 

interest. Upon stimulation with physiologic carbachol (1 μM; Ach analog), subsequent images show the initiation 

of the Ca2+ signal in the apical region followed by propagation to the basal region. (B) Each paneled image (1-4), 

corresponds to a frame along a representative tracing of change in fluorescence over time for each region of 

interest. (C-D) Oscillating Ca2+ signals are observed in response to low-dose caerulein (10 pM; CCK analog). 

These figures were originally published in the J Biol Chem (96) and (106). Republished with permission. 

 

Cells are loaded with the Ca2+ dye of choice, 

allowed to adhere to glass coverslips, and excited 

with the agonist of choice, while collecting real 

time images usually with a laser scanning 

confocal microscope (93).  

 

Intra-Acinar Protease Activation 

Premature intra-cellular activation of digestive 

proteases has long been thought to represent an 

early, initiating event in the pathogenesis of 

pancreatitis. The traditional method for examining  

 

intra-acinar protease activation involves probing 

pancreatic acinar cell lysates with a fluorogenic 

substrate for the protease of interest (58, 110, 

118). The readout is obtained from a fluorimeter 

(e.g. a fluorescent plate reader or cuvette system, 

also termed a fluorimeter) in the form of a kinetic 

plot. These data can be normalized to total protein 

content or total DNA in order to control for cell 

loading. Since the initial description of these 

fluorogenic substrates in 1983 (64, 65), bisamide 

derivatives of rhodamine 110 have been used as 
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a sensitive and selective substrate for activated 

protease measurements. Proteolytic selectivity is 

achieved by using specific benzyloxycarbonyl-

peptides. The tripeptide derivative bis-(CBZ-Ile-

Pro-Arg)-R110 (BZiPAR) has been successfully 

used by some groups to measure trypsinogen 

activation by live microscopy (54, 55, 62, 105).  

 

NF-κB Translocation 

NF-κB activation is thought to be an early and 

critical component of the inflammatory response 

during acute pancreatitis (104). Traditional 

methods for examining NF-κB activity in vitro 

include protein determination of NF-κB pathway 

markers (i.e. phosphorylated IκB; p65 nuclear 

translocation; IKK upregulation), electromobility 

shift assay (EMSA), and immunohistochemistry 

for phosphorylated p65 (51, 125). Newer 

techniques include the transfection (or usually 

infection via viral vectors in pancreatic cells) of 

NF-κB-luciferase reporters (Figure 4). With these 

techniques, binding of NF-κB subunits to a 

nuclear response element drives transcription of 

the luminescent protein luciferase. The commonly 

used luciferase reporters are firefly (21) and 

renilla (68) luciferases. The development of 

secreted luciferases such as gaussia (Gluc), 

secreted alkaline phosphatase (SEAP), and 

cypridina allows for serial determination from the 

media of NF-κB activity over time (3, 41, 87, 126).  

 

Mitochondrial Damage 

Mitochondrial dysfunction has been shown to play 

a critical role in the pathogenesis of pancreatic 

acinar cell injury, resulting in pancreatitis (73). 

Manifestations of mitochondrial dysfunction in 

pancreatitis include loss of mitochondrial inner 

membrane potential (m), generation of reactive 

oxygen species (ROS), release of the apoptosis, 

or programmed cell death mediator cytochrome c 

into the cytosol, and failure of ATP production; the 

events lead to varying degrees of acinar cell 

necrosis or apoptosis (92). Recent data show that 

preventing mitochondrial damage improves 

several aspects of pancreatitis and ameliorates 

disease severity (85, 119).  

 

The effect of pancreatitis on m can be 

measured in isolated acinar cells using the m-

sensitive fluorescence probe 

tetramethylrhodamine methyl ester (TMRM), 

which is a lipophilic cation dye whose 

accumulation in mitochondria is proportional to 

the amount of m. After preincubation with an 

agonist, cells are loaded with 1 μM TMRM for 10-

20 min at 370C and transferred to a fluorimeter to 

measure fluorescence intensity at 543 nm/570 nm 

(90, 119). m can also be detected using 

another m-sensitive fluorescence probe JC-1, 

which exists as a green monomer at low m. 

Because JC-1 forms red fluorescent J-aggregates 

at higher potentials, the ratio between red (550 

nm/600 nm) and green (485 nm/535 nm) 

fluorescence is used to monitor changes in m. 

A loss of m leads to depletion of intracellular 

ATP and subsequent necrosis. ATP levels in 

pancreatic acinar cells can be detected using a 

luciferin/luciferase luminescence-based assay 

that is normalized to protein content. 

 

Figure 4. Schematic of the NF-κB-luciferase adenoviral construct. The NF-κB-luciferase adenoviral construct 

contains six tandem-repeat transcription factor response elements, a minimal promoter, and a luciferase coding 

region. Binding of NF-κB subunits to a nuclear response element drives transcription of the luminescent protein 

luciferase. Originally published in the J Biol Chem (95). Republished with permission.  
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Permeabilization of the mitochondrial outer 

membrane occurs through opening of the 

mitochondrial permeability transition pore (MPTP), 

and the event is integral to apoptosis in 

pancreatitis. MPTP opening and subsequent 

mitochondrial outer membrane permeabilization 

result in the release of the mitochondrial resident 

protein cytochrome c into the cytosol. The 

technique to detect cytochrome c release within 

acinar cells relies on examining immunoblots 

against cytochrome c from cellular fractions of 

mitochondria-enriched membrane versus 

cytosolic fractions (74, 91).  

 

The mitochondria within acinar cells are highly 

susceptible to oxidative damage from ROS, and 

they in turn also serve as primary generators of 

ROS when the electronic transport chain within 

the inner mitochondrial membrane is perturbed 

(usually with loss of m). ROS can act as a 

molecular trigger of cytochrome c release and 

death responses in pancreatic acinar cells, thus 

also demonstrating the cross-talk in the 

mitochondria between necrosis and apoptosis 

triggers (85). Intracellular ROS levels (both 

mitochondrial and non-mitochondrial) are 

detected using 2,7-dichlorofluorescein (DCF) (91). 

ROS that is selectively generated by the 

mitochondria can be monitored by labeling the 

cells with the mitochondrial ROS-sensitive 

rhodamine-based fluorescent dye DHR123. 

Mitochondrial localization of DHR123 can be 

confirmed by co-staining the cells with the 

mitochondrial specific marker MitoTracker Red 

(CMXRos). Proper analysis of ROS production in 

living cells requires the combined use of several 

fluorescent ROS probes in parallel experiments, 

assessment of non-ROS related parameters that 

can induce artifacts (e.g. , pH), and the 

inclusion of adequate control conditions. For 

example, a common positive control that is known 

to cause the generation of mitochondrial ROS is 

rotenone, which inhibits complex I of the electron 

transport chain. A negative control is the 

mitochondrial uncoupler carbonyl cyanide m-

chlorophenylhydrazone (CCCP), which blocks 

mitochondrial ROS production. 

 

Cell Injury 

The three most common assays used to assess 

acinar cell injury include: (1) lactate 

dehydrogenase (LDH) release; (2) propidium 

iodide (PI) uptake; and (3) reduction of MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide). LDH catalyzes the interconversion of 

pyruvate to lactate and NADH to NAD+ (72). 

Elevated levels of LDH are indicative of tissue 

injury and breakdown. LDH can be measured 

using colorimetric assays supplied by Promega 

(cat #G1780) (93). PI is a high affinity DNA-

binding dye that is effectively excluded from live 

cells (59, 79, 123). Dead or dying cells have 

compromised plasma membranes and thereby 

allow the leakage of PI, which then enters the 

nucleus and binds to DNA. MTT reduction is a 

measure of mitochondrial function and cell 

viability (8, 16, 81). MTT is reduced to insoluble 

formazan by mitochondrial dehydrogenases. 

Water insoluble formazan can be solubilized using 

isopropanol or other solvents. The dissolved 

material is measured spectrophotometrically, 

yielding absorbance as a function of the 

concentration of the converted dye.  

 

4. Non-Alcholic Models 

Secretagogues  

The peptide hormone CCK, or its analog 

caerulein, has been used in in vitro models to 

reproducibly induce acute pancreatitis-like 

responses in acinar cells (14, 58, 63, 111, 112, 

134, 140). Pancreatic acinar cells express high 

and low affinity CCK receptors (CCKRs), which 

are activated by low and high concentrations of 

CCK, respectively (76, 139). Low concentrations 

in the picomolar range bind to high affinity CCK 

receptors and maximally stimulate physiological 

acinar cell enzyme secretion (138). High, or 

supra-physiological, concentrations in the 

nanomolar range bind to low affinity CCK 

receptors and result in a relative reduction in the 
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secretory response, a phenomenon that is 

thought to be pathological to the cell because it 

leads to the retention of the prematurely activated 

proteases and their missorting (62). 

 

The activation of digestive proteases requires a 

rise in cytosolic Ca2+, which occurs through 

release from intracellular Ca2+ pools (primarily the 

endoplasmic reticulum) that are gated by IP3 

receptors and ryanodine receptors (48, 60, 105, 

110). Another consequence of supraphysiological 

CCK, seen both in vitro and in vivo, is the 

emergence of large intra-acinar vacuoles (39, 

105, 120).  

 

There are other CCK analogues which do not lead 

to protease activation or pancreatitis, even at high 

concentrations because they elicit distinct 

phenotypic responses and distinct cell signals. 

They include the O-phenyl-methyl-ester analog of 

CCK (OPE) and JMV-180 (76, 139). These 

agonists can serve as physiological controls to 

differentiate between pathological signals. The 

agonist bombesin (also known as gastrin-related 

peptide) causes intra-acinar protease activation 

but no acinar cell injury because, unlike CCK, 

bombesin does not cause activated proteases to 

be retained in the acinar cell (34). Other 

secretagogues that stimulate acinar cell enzyme 

secretion include secretin, VIP, and pituitary 

adenylate cyclase-activating peptide (PACAP) 

(48, 115, 117). 

 

Several investigations have questioned whether 

CCK hyperstimulation is relevant to human acinar 

cells (109, 112). Whereas CCK receptors are 

abundant on murine acinar cells, they have little to 

no expression in the human acinar cell (50, 133). 

Except for a notable recent report (86), CCK failed 

to elicit a Ca2+ signal or a secretory response in 

isolated human acini (50, 78, 122). By contrast, 

acetylcholine or its long-acting analog carbachol 

stimulates robust physiological and pathological 

(at high millimolar concentrations) responses in 

acinar cells from mouse, rat, and man (70, 98). 

Several clinical correlates of pancreatitis are 

associated with cholinergic overload, from 

exposure to scorpion toxin or organophosphates 

(which would prevent the degradation of 

acetylcholine by inhibiting endogenous 

acetylcholinesterases) (107, 121, 128, 132).  

 

Bile Acids  

The most common cause of acute pancreatitis is 

impaction of gallstones or sludge in the distal 

common bile duct, a situation called biliary 

pancreatitis (4, 69, 71, 129). There are two hotly 

debated and non-mutually exclusive theories for 

biliary pancreatitis: (1) increased pressure in the 

pancreatic duct and (2) reflux of bile into the 

pancreatic duct (61). The latter can be 

recapitulated in vitro by exogenous administration 

of bile or its components. Bile is composed 

predominantly of the bile acids taurocholate (TC), 

taurochenodeoxycholate (TCDC), 

taurodeoxycholate (TDC), while taurolithocholic 

acid 3-sulfate (TLCS) comprises a small fraction 

of bile (26, 135). However, TLCS is most 

commonly used in vitro because it is the least 

hydrophilic and, therefore, most potent of the 

naturally occurring bile acids. It induces Ca2+ 

signals at low micromolar concentrations that are 

below the critical micellar concentration (42). Bile 

acids can be transported into pancreatic acinar 

cells through specific transporter, or they can bind 

to their cognate receptors, including the 

transmembrane G protein-coupled receptor TGR5 

(also known as the G-protein coupled bile acid 

receptor 1, or GPBAR1) (53, 102). Bile acid 

administration triggers aberrant acinar cell Ca2+ 

signals leading to trypsinogen activation and cell 

death (47, 83, 84, 130). Rescuing ATP depletion 

by patching ATP into isolated acinar cells 

prevents necrotic cell death due to the bile acids 

(11, 130, 131).  

 

Fatty Acids 

Recent investigations into the role of obesity 

during acute pancreatitis have revealed that 

accumulation of intra-pancreatic fat is associated 

with greater tendency towards pancreatic necrosis 

during acute pancreatitis and that acute 
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pancreatitis is associated with multisystem organ 

failure in obese individuals (23, 88, 108). These 

findings provided the rationale to examine a direct 

role for fatty acids in acinar cell pathobiology in 

vitro. Unsaturated fatty acids, in particular, appear 

to exert a proinflammatory role; they trigger 

pathological intracellular Ca2+ signals, inhibit 

mitochondrial complexes I and V, and cause 

necrosis. Saturated fatty acids have no such 

effect.  

 

5. Alcoholic Models 

Alcohol is a major etiology of acute pancreatitis 

(28, 145). Chronic ethanol exposure appears to 

sensitize the pancreas to the pathologic effects of 

other concomitant stressors in the development of 

the disease (2, 57, 70, 96).  

 

The mechanism of the sensitizing effect of alcohol 

is unclear. In vitro exposure to clinically relevant 

concentrations of ethanol (50-100 mM; for at least 

an hour of incubation, under sealed conditions) in 

combination with physiological concentrations of 

CCK or carbachol have been shown to trigger 

pathological responses of pancreatitis in acinar 

cells, including protease activation, intracellular 

activation of NF-kB, expression of pro-

inflammatory cytokines, vacuolization, and 

necrosis (25, 32, 56, 96).  

 

One mechanism of ethanol’s toxic effects is 

through the actions of its metabolites, including 

the oxidative (acetaldehyde) and non-oxidative 

(fatty acid ethyl ester, FAEEs) metabolites (9, 17, 

22, 136, 137, 143). Several studies have now 

demonstrated that both pathways in ethanol 

metabolism are evident in the pancreas and that 

exposure of pancreatic acinar cells to ethanol 

alone results in accumulation of both 

acetaldehyde and FAEEs (17, 18, 38). The non-

oxidative metabolites FAEEs increase acinar cell 

lysosomal fragility and induce a rise in intracellular 

Ca2+ (19, 40, 141), along with premature 

intracellular digestive enzyme activation, acinar 

cell vacuolization, and loss of m, ATP 

depletion, and cell necrosis (17, 131).  

 

6. Summary 

In summary, we have described methods for the 

isolation of pancreatic acinar cells, lobules, 

organoids, and slices. In addition, we have 

provided a description of assays for critical 

surrogates of pancreatitis in vitro. Lastly, we have 

given an overview of the various types of 

secretagogues and naturally occurring agonists 

that can be used to stimulate pancreatic acinar 

cells in vitro for the purpose of studying pathologic 

surrogates of pancreatitis. The use of such tools 

is helping researchers, not only to elucidate the 

molecular mechanisms mediating acute 

pancreatitis, but also to test novel therapeutic 

agents on acinar cells, that could reduce cell 

damage caused by pancreatitis. 
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