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1. The role of the pancreatic acinar 
cell in acute pancreatitis: 

Pancreatic necrosis, systemic inflammatory 
response syndrome, multiple organ failure and 
sepsis are characteristic of severe acute 
pancreatitis, which results in death of one in four 
patients and is without specific drug therapy (59, 
62). As the pancreatic acinar cell is an initial site 
of injury (41, 59), commonly initiated by bile or 
ethanol excess, investigation of its behaviour in 
response to toxins that induce acute pancreatitis 
may determine critical mechanisms and 
importantly identify new drug targets. In view of 
the critical role of calcium signaling in normal 
stimulus-secretion and stimulus-metabolism 
coupling, and the long known toxicity of raised 
intracellular calcium, we proposed the hypothesis 
that prolonged elevations of cytosolic calcium is 
the key trigger of acute pancreatitis (83). Since 
that proposal over 20 years ago, increasing 
evidence has confirmed that sustained elevation 
of the cytosolic calcium concentration ([Ca2+]C) is 
a critical trigger for pancreatic acinar cell injury 
and necrosis that depends on store-operated 
calcium entry (SOCE) (12, 24, 36, 39, 63, 84). 

 
 

2. The critical role of calcium entry 
in acinar cell injury: 

Intracellular Ca2+ signals control normal secretion 
from pancreatic acinar cells but can become a 
critical trigger in pathogenesis. Physiological 
concentrations of acetylcholine (ACh) and 
cholecystokinin (CCK) generate repetitive 
elevations in [Ca2+]C within the cellular apical pole 
that elicit stimulus-metabolism coupling to 
generate adenosine triphosphate (ATP) from 
mitochondria and stimulus-secretion coupling to 
initiate exocytosis (61). Intermittently, global 
extension of short-lived signals throughout the cell 
are necessary for nuclear signalling contributing 
to transcription and translation (61). Elevations of 
[Ca2+]C are buffered in mitochondria, notably those 
surrounding the apical pole, with subsequent 
reuptake into the endoplasmic reticulum (ER) by 
sarcoER Ca2+ ATPase (SERCA) pumps and 
extrusion by plasma membrane calcium pump 
(PMCA) (Figure 1). In contrast, toxins such as 
bile acids (81), oxidative (70) and non-oxidative 
metabolites (12, 34) of ethanol and CCK 
hyperstimulation (10, 53) each elicit abnormal 
elevations of [Ca2+]C that are global and 
sustained. The abnormal elevations induce 
premature activation of intracellular enzymes, 
mitochondrial dysfunction, impaired autophagy, 
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vacuolization and necrosis, all of which contribute 
to the pathogenesis of acute pancreatitis (11). 
Maintenance of these abnormal elevations 
depends on continued emptying of the ER Ca2+ 
store and activation of store-operated Ca2+ entry 
(SOCE) and Ca2+-release activated Ca2+ currents 
(CRAC) to replenish the ER store (24, 84).  Ca2+

 

chelation prevents zymogen activation and 
vacuolization through attenuation of Ca2+ overload 
in acinar cells in vitro (63, 67) and ameliorates the 
severity of acute pancreatitis in vivo (49). 
 
Excessive Ca2+ release from intracellular stores 
occurs predominantly via inositol 1,4,5-
trisphosphate receptor (IP3R) Ca2+ channels (26). 
The pancreatic acinar cell expresses all three 
subtypes of the IP3R in the apical region, close to 
the luminal membrane (21, 45, 46) but IP3R types 

2 and 3 are predominantly responsible for 
physiological Ca2+ signaling and enzyme 
secretion (21). Stimuli such as CCK (7) the bile 
acid taurolithocholic acid 3-sulphate (TLCS) (23, 
79), alcohol (25) and fatty acid ethyl esters 
(FAEEs) (12, 26) cause intracellular Ca2+ release 
in pancreatic acinar cells primarily via IP3Rs, an 
effect inhibited by double knockout of IP3R types 
2 and 3 (21) or by caffeine (26, 53). 
 
Since the discovery of the calcium entry channel 
ORAI1, ORAI1 has been shown to be the 
principal SOCE channel in the pancreatic acinar 
cell (45), opening of which is coordinated by 
stromal interaction molecules (STIM1 and 
STIM2), following decreases in ER calcium store 
concentrations (16, 24, 45, 50). 

 

Figure 1. Ca2+ signaling in the pancreatic acinar cell depends on tight control of concentrations across 
the plasma membrane and within subcellular organelles. In resting conditions [Ca2+]c is ~10,000 fold lower 
than outside the cell, with Ca2+ stored mainly in the ER. Stimulus-secretion coupling operates by secretagogue-
elicited GPCR activation to release second messengers that bind to inositol trisphosphate and ryanodine 
receptors on the ER, through which Ca2+ is released into the cytosol and mitochondria, initiating ATP production 
that provides energy for secretion. Ca2+ is cleared by reuptake into the ER and extrusion from the cell; the Ca2+ 
extruded is replenished via puncta forming between the ER and plasma membrane in response to low ER Ca2+ 
levels, allowing entry via ORAI channels. Pancreatitis toxins induce excessive ER Ca2+ release, initiating a vicious 
circle that overwhelms the cell (ER: endoplasmic reticulum; GA: Golgi apparatus; MT: mitochondria; NU: nucleus; 
ZG: zymogen granules). 
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GSK-7975A and CM_128 have been developed 
independently by GlaxoSmithKline (16, 24, 64) 
and CalciMedica (84) respectively to block ORAI1 
channels, although only CM_128 continues 
towards clinical development. GSK-7975A inhibits 
SOCE induced by thapsigargin in isolated murine 
pancreatic acinar cells over the range 1-50 µM 
(IC50 ~3.4 µM) (24), inhibits endocytic vacuole 
formation (78) and reduces necrosis induced by 
toxins that cause acute pancreatitis (24, 78, 84). 
CM_128 is a new molecular entity, the effects of 
which we have recently confirmed to be similar 

(84). We have also shown that ORAI inhibition 
inhibits SOCE and necrosis in human pancreatic 
acinar cells, and found ORAI inhibition to reduce 
markedly the severity of multiple models of 
experimental acute pancreatitis. 
 
Genetic knockout of the transient receptor 
potential canonical (TRPC) 3 channel (38), a non-
selective cation channel regulated in part by 
STIM1 via TRPC1 (42), results in ~50% reduction 
of in vivo serum amylase elevation and edema 
formation induced by four injections of cerulein 
(38). These experiments supported a role for 
SOCE in acute pancreatitis, but in a single, mild 
model with few parameters of response. 
 
As indicated we have defined the concentration-
dependent inhibitory effects of GSK-7975A and 
CM_128 on SOCE and necrosis in murine and 
human pancreatic acinar cells induced by TLCS 
(60, 79) or CCK-8 (38, 63). The effects of 
CM_128 on ORAI1 were confirmed by 
examination of its effect on Ca2+ release-activated 
Ca2+ currents (ICRAC) (16, 24, 50), in 
ORAI1/STIM1-transfected HEK 293 cells (16). 
GSK-7975A was given at selected doses in vivo 
after induction of acute pancreatitis with TLCS 
(TLCS-AP) (40), seven injections of cerulein 
(CER-AP) (43) or ethanol and palmitoleic acid 
(FAEE-AP) (34). Since GSK-7975A markedly 
reduced all parameters of pathobiologic response 
in a dose-dependent manner, a high dose of 
GSK-7975A and separately CM_128 was begun 
at two different time points after disease induction 
to determine the effect of early versus late drug 

administration. Drug administration begun one 
hour after disease induction was highly effective 
in reducing parameters of the pathobiologic 
response (84), significantly more so than when 
begun six hours after disease induction, in all 
models. These data provide thorough preclinical 
validation for ORAI channel inhibition as a 
potential early treatment for acute pancreatitis. 
 
We found GSK-7975A and the new molecular 
entity CM_128 to inhibit toxin-induced SOCE into 
murine and human pancreatic acinar cells in a 
concentration-dependent manner, 
exceeding >90% block of relative control values in 
some protocols (84). We also found both GSK-
7975A and CM_128 to significantly reduce 
necrotic cell death pathway activation in murine 
and human pancreatic acinar cells exposed to 
TLCS, which induces acute pancreatitis in vivo 
(40, 43). While effects of GSK-7975A have been 
described on thapsigargin- and FAEE-induced 
murine pancreatic acinar SOCE (24), our studies 
found GSK-7975A to have a similarly critical effect 
on TLCS- and CCK-induced murine pancreatic 
acinar SOCE, as well as thapsigargin-induced 
human pancreatic acinar SOCE and TLCS-
induced human pancreatic acinar necrotic cell 
death pathway activation (84). CM_128 showed 
higher potency (IC50 ~0.1 µM from ORAI1/STIM1-
transfected HEK 293 cell patch clamp data), and 
unlike GSK-7975A, no loss of efficacy at high 
doses. Comprehensive in vivo evaluation using 
three diverse, clinically representative models of 
acute pancreatitis (84) with prior pharmacokinetic 
assessment demonstrated the validity of SOCE 
inhibition as a therapeutic approach. Thus 
administration of either compound within one hour 
following disease induction was markedly 
effective across a representative range of local 
and systemic biochemical, immunological and 
histological disease responses. These data 
provide robust confirmation of the hypothesis that 
cytosolic Ca2+ overload is a critical trigger of acute 
pancreatitis (83). 
 
Further confirmation of the role of cytosolic Ca2+ 
overload in acute pancreatitis has come from our 
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work with xanthines (35). We defined the 
inhibitory effects of methylxanthines on IP3R-
mediated Ca2+ release from the pancreatic acinar 
ER store into the cytosol and potential application 
in acute pancreatitis. It has been shown that 
caffeine inhibits IP3Rs as well as IP3 production in 
a concentration dependent manner (75). We 
found that inhibition of IP3R-mediated Ca2+ 
release is attributable at least in part to an action 
on the IP3R, since xanthines inhibited IP3R-
mediated Ca2+ release elicited by uncaged IP3 
(35). Caffeine, theophylline and paraxanthine 
prevented physiological Ca2+ signaling and toxic 
elevations of [Ca2+]C induced by agents (CCK and 
TLCS) that cause acute pancreatitis, in a 
concentration dependent manner (500 µM to 10 
mM), also inhibiting falls in mitochondrial 
membrane potential (∆ΨM) and necrotic cell death 
pathway activation. An inhibitory action on 
phosphodiesterase (PDE) preventing 
cAMP/cGMP degradation could not account for 
the effects on toxic [Ca2+]C overload, since 
additional cAMP/cGMP did not prevent these. 
Extending these findings in vivo, caffeine 
significantly reduced the severity of multiple, 
diverse models of acute pancreatitis (35). The 
combined concentrations of di- and 
trimethylxanthines after the 25 mg/kg caffeine 
protocol were within the range over which effects 
on both IP3R-mediated Ca2+ release and toxic 
elevations of [Ca2+]C were identified. Despite the 
half-life of caffeine in mice of ~60 min (4), the 
combined peak concentrations of di- and 
trimethylxanthines with 25 mg/kg caffeine regimen 
(7 injections) were >2 mM, and serum caffeine 
was >400 μM 6 h after last caffeine injection. 
Following similar protocols of 25 mg/kg 
theophylline or paraxanthine, concentrations were 
far below the effective range on IP3Rs but within 
the effective range on PDE (approaching 100 µM 
10 min after the last dimethylxanthine injection) 
(20), and no protective effects on in vivo acute 
pancreatitis were seen. Since pancreatic cellular 
injury initiates and determines severity in acute 
pancreatitis, the protective effect of caffeine on 

acute pancreatitis is likely to have been mediated 
by inhibition of IP3R-mediated Ca2+ release. 
 
3. The effects of calcium elevation in 
mitochondria: 

The pancreatic acinar cell typifies non-excitable 
exocrine cells with a high secretory turnover that 
is heavily dependent on mitochondrial production 
of ATP (61). While zymogen activation has long 
been considered the principle mechanism of injury 
(41, 59), mitochondrial dysfunction has been 
increasingly implicated (12, 34, 44, 68, 70, 74, 
80), presumed consequent upon intracellular Ca2+ 
overload induced by toxins that include bile acids 
and ethanol metabolites (5, 12, 34). Mitochondrial 
uptake of Ca2+ drives normal cellular 
bioenergetics, but high calcium loads induce 
increasingly drastic responses culminating in 
necrosis (30). Mitochondrial matrix Ca2+ overload 
leads to opening of the mitochondrial permeability 
transition pore (MPTP), a non-specific channel 
that forms in the inner mitochondrial membrane 
allowing passage of particles under 1500 Da, 
causing loss of ∆ψm essential to ATP production 
(30); recent evidence implicates F0F1 ATP 
synthase in MPTP formation (1, 27). MPTP 
opening is physiological in low conductance mode 
releasing Ca2+ and reactive oxygen species 
(ROS) to match metabolism with workload (17, 
18), but pathological in high conductance mode 
compromising ATP production and inducing cell 
death (30); both functions are regulated by the 
mitochondrial matrix protein peptidyl-prolyl cis-
trans isomerase (PPI, cyclophilin) D (also known 
as cyclophilin F) (76).  
 
Our work has demonstrated that MPTP opening is 
critical to experimental acute pancreatitis, 
mediating impaired ATP production, defective 
autophagy, zymogen activation, inflammatory 
responses and necrosis (52), all features of acute 
pancreatitis at molecular, cellular and whole 
organism levels (59). We have established the 
general significance of MPTP opening as a 
central mechanism in the pathogenesis of acute 
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pancreatitis, and the primary role in this process 
of Ca2+ overload. Patch clamp data show how 
tight control of cytosolic Ca2+ elevations essential 
to normal stimulus-secretion coupling by IP3Rs 
and ryanodine receptors (RyRs) (61) is lost in Wt 
but maintained in Ppif-/- pancreatic acinar cells, 
which lack functional MPTP, preserve ATP supply 
and clear Ca2+ more effectively. Coupling of ER 
IP3Rs and RyRs with outer mitochondrial 
membranes tightly localizes high Ca2+ 
concentrations (65), but may expose mitochondria 
to abnormal Ca2+ release, despite modulation by 
Bcl-2 family proteins (74). We have shown that 
pancreatitis toxins cause abnormal release of 
Ca2+ via IP3Rs and RyRs that overloads 
pancreatic acinar mitochondria (52), which are 
markedly sensitive to Ca2+ signals (58). The 
mitochondrial Ca2+ overload induces high 
conductance MPTP opening and dissipates ∆ψm, 
initiating collapse of ATP production, diminished 
Ca2+ clearance, PGAM5 (phosphoglycerate 
mutase family member 5, a mitochondrial protein 
phosphatase) activation and subsequent necrosis 
(52). Importantly for a disease without specific 
treatment, pharmacological MPTP inhibition (55, 
84) administered after acute pancreatitis induction 
came close to preventing all injury, notably in the 
clinically relevant TLCS-AP. 
 
For more than a century following an original 
postulate by Chiari (8), acute pancreatitis has 
been viewed as an autodigestive disease 
consequent on pathological zymogen activation 
(22, 29, 36, 41, 66). In experimental acute 
pancreatitis zymogens are activated inside acinar 
cells within minutes of toxin exposure (41, 47, 59, 
63), which we have shown to result from induction 
of the MPTP, caused by and contributing to Ca2+ 
overload. Sustained Ca2+ overload may activate 
degradative calpains, phospholipases or other 
enzymes (76) and damage zymogen granules, 
inducing autophagic (47) and/or endolysosomal 
(71) responses that activate digestive enzymes. 
Such activation was not completely prevented by 
MPTP inhibition, however, this was likely from 
global cytosolic Ca2+ overload that was seen to be 

more effectively cleared in Ppif-/- cells, without 
which overload no enzyme activation occurs (63). 
Nevertheless, intracellular expression of trypsin 
per se without mitochondrial injury leads to 
apoptotic not necrotic pathway activation (22) and 
trypsinogen activation does not appear necessary 
for either local or systemic inflammation (13); 
knockout of cathepsin B greatly reduces 
trypsinogen activation with little effect on serum 
interleukin-6 or lung injury (29). Hereditary 
pancreatitis caused by cationic trypsinogen gene 
mutations rarely features clinically significant 
pancreatic necrosis (33, 85); further, systemic 
protease inhibition has had little success as a 
clinical strategy (59), suggesting that while 
zymogen activation contributes, it is not the critical 
driver of acute pancreatitis. Our work, however, 
shows that MPTP opening triggers defective 
autophagy, while inhibition of MPTP opening 
preserved ATP supply, increased the efficiency of 
autophagy and decreased zymogen activation. 
Together with major effects of MPTP opening on 
PGAM5 activation that implements necrosis (69, 
82), and on local and systemic inflammatory 
responses, these findings now place 
mitochondrial injury centrally in acute pancreatitis. 
 
Our data show that in pancreatic acinar cells 
IP3Rs and RyRs are vulnerable to specific toxins 
that markedly increase their Ca2+ channel open-
state probabilities (52). Toxic transformation of 
Ca2+ channel function induced pancreatic acinar 
cell necrosis through Ca2+-dependent formation of 
the MPTP, with diminished ATP production the 
critical consequence. Toxic transformation by 
different toxins was specific to different second 
messengers, identifying potential for a variety of 
deleterious effects. ATP deficiency may be further 
exacerbated by fatty acids released on hydrolysis 
of FAEEs or triglycerides (56), which may inhibit 
beta-oxidation (12). Without sufficient ATP, 
cytosolic Ca2+ overload produces a vicious circle 
in which high affinity, low capacity SERCA and 
PMCA pump clearance of cytosolic Ca2+ is 
impaired, further mitochondrial injury sustained, 
and necrotic cell death accelerated (5, 12). 
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Although the toxicity of cytosolic Ca2+ overload 
depends on Ca2+ store refilling from outside the 
cell (38, 63), specific second messenger receptor 
blockade demonstrated Ca2+ overload to be due 
completely to release from their Ca2+ channels 
(52), not direct effects of toxins on Ca2+ entry or 
extrusion. 
 
Whereas the vast majority of previous studies 
undertaken to determine mechanisms and/or new 
targets in acute pancreatitis have used only one 
model, we have used four models (52) that are 
broadly representative of a range of etiologies, 
including biliary (TLCS-AP), hyperstimulation 
(CER-AP), ethanolic (FAEE-AP) and amino acid-
induced (CDE-AP) (59, 72). Our findings in 
experimental acute pancreatitis are entirely 
consistent with those made in isolated 
mitochondria and cells, identifying a generalized 
mechanism of pancreatic injury and necrosis, 
confirmed in murine and human pancreatic acinar 
cells, pancreas lobules and tissue slices. 
Pancreatic necrosis drives the inflammasome 
(32), which can be induced by MPTP opening (54) 
and is part of the systemic inflammatory response 
contributing to multiple organ failure (62). Further 
pancreatic injury is driven through tumor necrosis 
factor receptor activation that also promotes 
MPTP opening (31) and calcium deregulation, 
activating calcineurin and calcineurin-dependent 
transcription factor nuclear factor of activated T 
cells (51). 
 
4. Therapeutic avenues for acute 
pancreatitis: 

Our novel human data support the potential 
applicability of SOCE inhibition as a treatment for 
clinical acute pancreatitis (Figure 2). Both GSK-
7975A and CM_128 blocked SOCE promptly, 
shown to result in complete block of human 
ORAI1 by CM_128 (84). While an action on other 
ORAI channels cannot be excluded and could be 
desirable, ORAI1 is the primary channel for SOCE 
into pancreatic acinar cells (24, 45), blocked by 
both compounds. ORAI channels also contribute 

to inflammatory cell responses, including 
neutrophil migration and activation (3); inhibition 
of innate immune responses significantly reduces 
the severity of experimental acute pancreatitis 
(28), thus there may be a contribution from ORAI 
inhibition of immune cells. Nevertheless while 
knockout of ORAI1/STIM1 SOCE inhibits 
neutrophil functions, it does not prevent all (3), so 
the primary contribution of ORAI blockade in our 
experiments is likely to have been in the 
pancreas. Further, since SOCE inhibition for 
clinical acute pancreatitis would necessarily be 
short-term, inhibition of the adaptive immune 
system (3) would also be short-term. ORAI 
blockade has less effect on other cell types in 
which ORAI channels have a less prominent role, 
such as electrically excitable cells in which other 
ion channels, e.g. non-selective cation channels, 
have a larger role in Ca2+ entry (9). Non-selective 
cation channels, however, permit limited SOCE 
into pancreatic acinar cells (24, 38) that could 
sustain essential Ca2+ entry (9). Without such 
Ca2+ entry, continued activation of the plasma 
membrane Ca2+-ATPase pump upon 
secretagogue- or toxin-mediated release of Ca2+ 
from intracellular stores could deplete these 
stores to deleterious levels, inducing or 
exacerbating ER stress (48). 
 

Both ORAI inhibitory compounds were 
administered after disease induction to model 
treatment of clinical acute pancreatitis, but delay 
in administration of either compound to six hours 
after disease induction resulted in diminished 
efficacy, dependent on the endpoint measured 
and the model employed (84). While biological 
time courses including that of acute pancreatitis  
are longer in humans than mice (15, 43, 59, 62), 
with pancreatic necrosis typically detected within 
days rather than hours (73), human pancreatic 
acinar necrotic cell death pathway activation may 
begin in clinical acute pancreatitis at an early 
stage after disease onset, shown here in mouse 
models within six hours of onset.  
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Figure 2. Abnormal Ca2+ signaling in the pancreatic acinar cell initiated by pancreatitis toxins (e.g. bile 
acids, FAEEs, hyperstimulation) causes injury dependent on continued store-operated Ca2+ (SOC) entry 
via ORAI channels. As a consequence mitochondria are overloaded with Ca2+, failing to produce adequate ATP 
to clear the Ca2+ and protect the cell. Autophagy is defective and vacuoles develop presaging death of the cell. 
Ca2+ entry blockade prevents these events, avoiding prolonged, global cytosolic Ca2+ overload. This was first 
demonstrated by removal of Ca2+ from the external medium surrounding isolated cells and has since been shown 
using ORAI blockers applied to isolated human and murine pancreatic acinar cells. These findings have since 
been extended into three murine models of experimental acute pancreatitis, in which this strategy of Ca2+ entry 
inhibition with ORAI blockers has been demonstrated to be highly effective. 
 
Door-to-needle times of less than 60 minutes are 
established guidelines for patients with acute 
myocardial infarction (30 min) (57) and acute 
ischemic stroke (60 min) (37), making every 
second count, with national and international 
quality improvement initiatives underway towards 
fully achieving these (19).  
 
Although pancreatic necrosis has a less rapid 
time course and is characteristically not the result 
of major arterial occlusion (59), the translational 
implication of our work is that door-to-needle time 
is an important issue in administration of any 
treatment for acute pancreatitis that targets the 
pathogenesis of pancreatic injury, which drives 
the disease. Previously clinical trials of treatments 
for acute pancreatitis have ‘enriched’ recruitment 
with patients predicted to have severe disease 

(often with recruitment up to 72 h after admission) 
(77), which delays initiation of therapy. 
Furthermore, the expansion of disease categories 
from the original Atlanta Classification (mild and 
severe) (6) into the revised Atlanta (mild, 
moderate and severe) (2) and Determinants-
Based (mild, moderate, severe, critical) (14) 
classification, further complicates patient selection 
from among these potentially overlapping sub-
groups. To minimize door-to-needle time a 
quicker and more accurate approach to the 
selection of patients is required for trials of any 
therapy, such as that offered here with ORAI 
inhibition by CM_128, a novel molecular entity 
currently undergoing preclinical toxicological 
evaluation prior to phase I trials. 
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With respect to inhibition of Ca2+ release within 
the pancreatic acinar cell rather than Ca2+ entry 
into the cell, it is important to note that in our 
studies high doses of caffeine were required to 
reduce the severity of experimental acute 
pancreatitis.  The most effective 25 mg/kg 
regimen extended into toxicity, indicative of a very 
narrow therapeutic index. At this dose the number 
of hourly injections had to be reduced from seven 
to two in FAEE-AP to avoid mortality; in CER-AP, 
50 mg/kg resulted in caffeine intoxication 
syndrome, although at 25 mg/kg no visible side 
effects were observed. In humans even 10 mg/kg 
caffeine would be likely to induce caffeine 
intoxication, with florid neuro-excitotoxic and other 
undesirable side effects (20). There is marked 
individual variability in caffeine metabolism and 
pharmacokinetics (20); since the half-life in 
humans typically ranges from three to seven 
hours, repeated high doses would be hazardous, 
unless rapid therapeutic monitoring were to be 

possible. Nevertheless our study has 
demonstrated proof of principle that caffeine 
causes marked amelioration of experimental 
acute pancreatitis, largely through inhibition of 
IP3R-mediated signalling. Medicinal chemistry 
starting with the template of caffeine and/or other 
compounds that inhibit IP3R-mediated signalling 
could lead to more potent, selective and safer 
drug candidates for acute pancreatitis. This 
approach, however, might have effects on IP3R-
mediated signalling in other cells, tissues and 
organs including the brain and other solid organs. 
 
Our data from the cyclophilin D knockout and 
pharmacotherapy with Debio-025 (non-
immunosuppressive derivative of cyclosporin A) 
or TRO40303 (in clinical development for other 
indications) show the potential for MPTP inhibition 
as an alternative strategy to ORAI inhibition 
(Figure 3). 
 

 
Figure 3. The MPTP plays a critical role in the development of acute pancreatitis. Pancreatitis toxins induce 
a sustained rise in [Ca2+]C that crosses the inner mitochondrial membrane (IMM) via the mitochondrial uniporter 
to enter the mitochondrial matrix. Consequent Ca2+-cyclophilin D (CypD) activation promotes MPTP opening, 
causing mitochondrial depolarization and impaired ATP production, failure of Ca2+ clearance and cell injury. When 
MPTP opening is inhibited by genetic (Ppif−/−) or pharmacological means (DEB025 or TR040303), mitochondrial 
membrane potential is preserved and ATP production sustained. This maintains cellular integrity to clear calcium 
more effectively and prevents the development of acute pancreatitis (lower panel) (Copyright © BMJ Publishing 
Group Ltd and British Society of Gastroenterology. All rights reserved: http://gut.bmj.com/content/65/8/1333.full). 
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The effect of this approach was remarkably 
effective in both isolated human and murine 
pancreatic acinar cells as well as in four models of 
experimental acute pancreatitis (52). The 
attractions of this approach are made stronger by 
the relative modest phenotype of the cyclophilin D 
knockout that is able to grow, develop and breed 
normally; there is an extensive range of 
pathologies that cyclophilin D knockout protects 
against, although capacity for exercise is reduced 
and there is some impact on memory in later life 
(17, 18). These effects are unlikely to be 
important in short-term administration as would be 
required in acute pancreatitis, and has not proven 
a problem in long-term administration of 
cyclosporin A. 
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