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1. Introduction 

Chronic pancreatitis (CP) is a disease that remains 

without specific treatment and carries with it a 

substantial morbidity. The disease is a chronic 

inflammatory disease of the pancreas with the key 

hallmark being progressive fibrotic destruction of 

the pancreatic secretory parenchyma resulting in 

loss of acinar cells and islet cells and subsequent 

exocrine and endocrine insufficiency (13, 60). 

There is a significant variation in the epidemiology 

of CP amongst worldwide studies over the last forty 

years, mainly concentrated in the western world, 

indicating a range in incidence from 2.1 – 13.4 / 

100,000 (46), with  a twenty year mortality rate of 

35.8 – 62% (47, 70). Numerous etiological factors 

have been identified: alcohol, nicotine, nutrition, 

hereditary / genetic, efferent duct / obstructive, 

autoimmune (60). Autoimmune pancreatitis, while 

recognized as a form of CP, is characterized by 

infiltration of lymphocytes and IgG4-positive 

plasma cells within the pancreatic parenchyma and 

responds significantly to steroid treatment, unlike 

other forms of CP, so will not be considered further 

in this review; nor will the management of 

pancreatic exocrine and/or endocrine insufficiency. 

While alcohol remains the most common 

etiological factor in most studies (16) only a small 

proportion of alcoholics develop chronic 

pancreatitis (70) suggesting a multi-factorial 

etiology to the disease. Our understanding of the 

interplay and contribution of risk factors has been 

greatly enhanced by genetic discovery, starting 

with the discovery nearly 20 years ago of mutations 

in the cationic trypsinogen gene (PRSS1) causing 

hereditary pancreatitis (107) to the recent 

identification of common genetic variants in 

CLDN2 conferring an increased risk of alcohol-

related CP, particularly in men (108).  

 

The demand for novel treatments for CP has never 

been greater and this is based upon a number of 

factors. [1] The variation in epidemiology may be 

attributable to problems with long-term follow up, 

especially in chronic alcoholics, as well as common 

delays in obtaining a formal and standardised 

diagnosis. As a result, the disease burden is likely 

to be higher than previously reported (46). [2] No 

treatments are available to halt the progression of 

the disease and current treatment options for CP 

are limited to supportive and palliative care; 

patients with advanced disease can be managed 

with endoscopic and/or surgical pancreatic 

decompression, denervation, resection, bypass or 

transplantation (23, 95). [3] The patient impact of 

CP is significant both directly, with recurrent severe 

pain – the primary clinical complaint (3)  – and 

repeated hospital admissions leading to a poor 

quality of life, as well as indirectly, through the 

complications of malnutrition and diabetes mellitus 

that result from exocrine and endocrine 

insufficiency. [4] The health resource burden as a 



2 

result of the disease is sizeable with estimated 

costs for both acute and chronic pancreatitis in the 

USA in 2004 amounting to $3.8 Billion (21). [5] A 

considerable number of patients presenting with 

acute pancreatitis (AP) may progress on to CP and 

risk factor control, be it from a hereditary etiology 

to a predominant alcoholic etiology, remains 

difficult. Population-based studies report that 20% 

– 45% of patients have a recurrence of AP, with the 

highest rates being amongst those with alcohol-

related AP (71). Progression to CP after recurring 

AP has been reported in 4%–24% of patients, 

again more commonly amongst those with 

alcoholic recurrent AP (43). Interestingly, a long-

term prospective study (1976 –1992) of patients 

who had recurring AP and continued to consume 

alcohol, disease progressed to CP in  as many as 

78% (2), with a 30-year Danish follow-up study 

finding that AP (alcohol-related and idiopathic) 

progressed to CP with a mean interval of 3.5 years 

(65). [6] CP carries a substantial risk of 

progression to pancreatic ductal adenocarcinoma 

(PDA). Patients with CP have a higher incidence of 

PDA (56), and individuals with hereditary 

pancreatitis have a 40% cumulative risk of 

developing PDA in their lifetime (99). 

 

These crucial clinical characteristics of CP 

highlight the need for targeted novel treatment 

strategies to halt disease progression and thus 

improve patient outcomes. If novel drugs are 

combined with better standardised early diagnosis, 

a potentially significant impact on disease outcome 

may result. The identification of such putative 

treatment pipelines rests on a clear understanding 

of disease pathogenesis and mechanisms so that 

appropriate targets can be identified for drug 

discovery programmes as well as open options for 

drug repositioning. 

 

2. Pathogenesis of CP and potential 

treatment strategies 

The sentinel acute pancreatitis event (SAPE) 

hypothesis, first described by Whitcomb in 1999, 

provides a unified model for the pathogenesis of 

CP (105). After studying cases of hereditary 

pancreatitis, Whitcomb et al. found that 50% of 

patients with gain-of-function trypsinogen 

mutations experienced repeated episodes of AP 

that later developed into CP (86). Regardless of the 

cause of the sentinel event of AP, recurrent 

episodes of AP can progress to CP. CP is thus a 

complex multifactorial disease that requires the 

interaction of various environmental factors (e.g. 

alcohol consumption), recurrent injury (e.g. trypsin 

activation and autodigestion) and the immune 

response (106). AP is characterised by acinar and 

ductal cell injury, premature acinar zymogen 

activation, recruitment of inflammatory cells, auto-

digestion and necrosis of acinar and ductal cells, 

subsequent reparative and anti-inflammatory 

responses, repetitive episodes of which drive 

pancreatic stellate cell (PSC) activation and PSC-

dependent fibrosis (110). Recurrent and/or 

sustained pancreatic parenchymal injury and 

inflammation lead to progressive irreversible 

fibrosis (110), the pathological hallmark of CP. 

Pain, however, does not correlate well with 

morphological features of CP (109) and the extent 

to which primary parenchymal injury contributes to 

the progression of established CP is unclear. 

Nevertheless any strategy to modulate outcome in 

CP must be based on a detailed understanding of 

the pathological process of destruction of the 

pancreatic parenchyma and resultant fibrogenesis. 

 

Our understanding of fibrogenesis in the pancreas 

of patients with CP improved with the finding that 

PSCs regulate synthesis and degradation of the 

extracellular matrix proteins (particularly 

fibronectin and fibrillary collagen types) that 

comprise fibrous tissue (67). Under normal 

homeostatic conditions, PSCs remain in their 

quiescent form but they can be activated by a 

variety of toxic factors, such as ethanol and its 

metabolites, or by inflammatory cytokines and 

chemokines, which are up-regulated in pancreatic 

tissues of patients with CP. Such factors induce 

PSCs to proliferate and transform into 

myofibroblast- like cells (6). Thus, novel 

therapeutic strategies could target one of three 

potential areas in the disease process: treatments 
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to reduce primary parenchymal injury, 

immunomodulation or pancreatic stellate cell 

inhibition (Figure 1). 

 

3. Immunology of CP 

How immune factors contribute to disease 

pathogenesis and specifically PSC activation is an 

area of pivotal understanding that may produce 

numerous potential treatment pipelines. Immune 

cells play a key role in the pathogenesis of CP with 

a variety of changes observed in the condition 

(Table 1). Infiltrating myeloid cells have previously 

been demonstrated to play a crucial role in PSC 

activation with activated macrophages previously 

shown to stimulate collagen and fibronectin 

synthesis by cultured PSCs (84), and furthermore 

by the requirement of myeloid (rather than acinar 

cell) nuclear factor-κB p65 subunit to promote 

fibrosis in experimental CP (94).  

 

An increasing number of studies have focussed on 

the role of T cells in CP. An early study 

demonstrated pancreas samples to have 

significant increases in CD4+ and CD8+ T-cell 

infiltrates and perforin messenger RNA–

expressing cells in CP lesions compared with 

healthy pancreatic tissue, indicating the likely 

involvement of cell-mediated cytotoxicity (35). 

Another study demonstrated no differences in total 

leukocyte or T-cell populations, however  samples 

from patients with CP had increased numbers of 

CD4+ and CD8+ central memory T-cell subsets 

(CCR7+) compared with controls (28).  

 

 

Figure 1. Potential therapeutic strategies for CP. The main areas that novel treatment strategies focus are risk 

factor modification, the restoration of normal ductal function in circumstances where this may be altered i.e. in CP 

with a predominant obstructive efferent duct aetiology, primary parenchymal protection, immunomodulation and 

pancreatic stellate cell (PSC) inhibition, applicable to all causes of CP. There exists a significant overlap between 

strategies targeting the immune system and pancreatic stellate cells with agents often affecting both. 
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Table 1: Summary of the key pathoimmunological responses observed in CP 

Key immunological changes in CP Reference 

↑ Myeloid cell pancreatic infiltrates, particularly macrophages 

 

Treiber et al., 2011 

(94) 

↑ Inflam. cytokines (IL-6, IL-1β, TNF-α, TGF-β, PDGF, ROS) Mews et al., 2002 

(57) 

↑ CD4+ and CD8+ T cell pancreas infiltrates 

 

Hunger et al., 1997 

(35) 

↑ Circulating memory T cells 

 

Grundsten et al., 

2005 (28) 

Changes in memory and regulatory T cell responses 

 

Schmitz-

Winnenthal  

et al., 2010 (85) 

↑ Activation of PSCs 

 

Apte et al., 2005 

(6) 

 

Changes predominantly are observed in macrophage and T cell infiltrates, an increase in inflammatory cytokines, 

and increased activation of quiescent pancreatic stellate cells (PSC). Increasing evidence exists demonstrating 

changes in number and function of circulating memory and regulatory T cells. 

 

A more recent study investigated pancreas-

specific T cell responses to antigens from lysates 

of human CP lesions obtained during surgical 

resection (85).T cells from CP patients had higher 

levels of IL-10–based responses to pancreatitis-

associated antigens compared to normal controls 

and patients with pancreatic ductal 

adenocarcinoma, supporting the association 

between CP and changes in tissue- and disease-

specific memory and regulatory T-cell responses 

(85). The tragedy remains however that even in the 

light of these significant advances in our 

understanding of the pathoimmunology of CP there 

remains no immune-based therapies for the 

disease, but this could change in the future with 

significant recent advances in our understanding of 

the roles of PSCs and their interactions with 

immune and other pancreatic cells. 

 

4. Pancreatic stellate cells: key to 

CP fibrosis 

Amongst all pancreatic parenchymal cells, 

pancreatic stellate cells (PSCs) comprise 4–7% 

(7), and have been clearly established over the last 

twenty years as the key executors of pancreatic 

fibrogenesis. Indeed, numerous in vitro and in vivo 

studies clearly demonstrate the central role of 

activated PSCs in chronic pancreatitis associated 

fibrosis. PSCs are activated by a variety of toxic 

factors or by inflammatory cytokines and 

chemokines produced in CP, resulting in PSC 

proliferation and transformation into myofibroblast 

like cells (6) that produce the pancreatic fibrosis 

that characterises CP. The intracellular signalling 

mechanisms regulating PSC activation include the 

mitogen-activated protein kinase (MAPK) pathway, 

which plays a major role in ethanol- and 

acetaldehyde dependent activation of PSCs, 

phosphatidylinositol-3-kinase, and protein kinase 

C (54). The transition to the myofibroblast like 

phenotype is associated with increased expression 

of specific smooth muscle genes such as α smooth 

muscle actin (ACTA2) and transgelin (SM22α) and 

of specific markers such as cytoglobin/stellate cell 

activation associated protein (Cygb/STAP) in 

fibrotic lesions of the pancreas (62).  Pancreatic 

stellate cells can be activated directly by alcohol 

consumption (5) or by cytokines derived from the 

immigrating inflammatory cells (33, 48). Platelet-

derived growth factor is the major promoter of PSC 

migration, whereas transforming growth factor A 

(TGFA) affects ECM production via a Smad 
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associated pathway. Upon phosphorylation by the 

TGFA receptor, Smad3 enters the nucleus to 

modulate the transcription of target genes (79). 

Smad3 links TGFA signalling directly to the serum 

response factor (SRF)-associated regulatory 

network that controls the expression of smooth 

muscle-specific genes (74). 

 

Although the earliest studies tended to primarily 

focus on the role of PSCs in pathological fibrosis, 

recently the maintenance of homeostasis within 

the pancreas by PSCs has been further explored 

(7), with roles in a number of physiological 

processes identified: the maintenance of normal 

ECM turnover; a role in cholecystokinin-mediated 

pancreatic exocrine secretion; recognition of 

pathogen-associated molecular patterns (PAMPs) 

via Toll-like receptors; a role in innate immunity by 

phagocytosing necrotic acinar cells and 

neutrophils; and the expression of stem cell 

markers with capacity to function as progenitor 

cells (4). 

 

It is generally agreed that the PSCs in CP are 

mainly derived from the resident cells with some 

contribution from bone marrow derived pluripotent 

cells (36). Increasing evidence exists highlighting 

the role of PSCs in CP towards both exocrine and 

endocrine dysfunction.  Increased PSC numbers 

have been detected in fibrotic areas around and 

within the islets of Langerhans in the pancreas of 

Goto-Kakizaki rats (a model of type 2 diabetes) and 

in-vitro work has shown that PSCs inhibit insulin 

secretion by beta cells as well as causing 

apoptosis of those cells. Recent studies have 

reported that hyperglycaemia aggravates the 

detrimental effects of PSCs on beta cell function 

(117), and that in hyperglycaemic mice, cerulein-

induced chronic pancreatitis is significantly 

aggravated when compared with normoglycaemic 

mice (116).  

Utilizing the understanding gained from these 

studies about the role of PSCs in chronic 

pancreatitis, many subsequent studies aimed at 

developing novel therapeutic approaches to 

minimize or reverse the fibrosis have been 

performed. These treatments have mostly been 

applied in established experimental models of 

pancreatic fibrosis frequently utilizing 

histopathological assessment and assays of PSC 

activation. Improvements in methods to isolate 

PSCs have allowed various previously difficult in 

vitro methods to be applied to the assessment of 

drug efficacy. A variety of therapeutic strategies 

have been tested with promising results in a range 

of experimental CP models over the last 10 years: 

antioxidants (119), inhibition of profibrogenic 

growth factors such as TGF-β (120), peroxisome 

proliferator-activated receptor gamma (PPARγ) 

ligands such as thiazolidinediones (38), protease 

inhibitors (25), a prostacyclin analogue ONO-1301 

(64), the flavonoid apigenin and its analogues (58), 

inhibition of collagen synthesis by targeted 

treatment of PSCs with collagen siRNA (37), an 

anthraquinone derivative Rhein (96), amongst 

others (Table 2). 

 

The models of CP used have included repetitive 

caerulein injections over three to 10 weeks, the 

commonest model that has the advantage of 

targeting the pancreas; dibutyltin dichloride that 

induces fibrosis in the pancreas and liver; chronic 

ethanol administration with lipopolysaccharide, 

and combinations of these (45) as well as 

transgenic animals e.g. those expressing normal 

and mutated human cationic trypsinogen genes 

(9). The above studies are encouraging as 

potential treatments for pancreatic fibrosis in CP 

but the real challenge lies in translating these 

preclinical findings to the clinical setting. Amongst 

these studies, a variety of techniques ranging from 

in vitro to in vitro and in vivo using both mouse and 

human tissue, have been employed and some of 

the more promising treatments are appraised in 

more detail in the subsequent sections. 

Nevertheless greater standardisation is required in 

both preclinical models and clinical trial designs, 

the latter being especially underdeveloped for drug 

trials. 
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Table 2: Summary of key molecular targets and putative treatments tested in 

experimental CP in the last 10 years 

Target / Drug Model of CP Findings Reference 

TGF-β  

/ Adenoviral Vector 

expressing AdTb-ExR 

 

/ Halofuginone 

 

C57BL/6 mice Cerulein 

for 3 wks 

 

C57BL/6 mice Cerulein 

for 4/8 wks 

 

Reduced fibrosis and reduced activated 

PSCs 

 

 

Reduced fibrosis 

 

Nagashio et al., 

2004 (61) 

 

 

Zion et al., 2009 

(120) 

Protease Inhibitors 

/ Camostat mesilate 

DBTC Rat for 4 wks with 

treatment at 1wk 

Cultured PSCs 

Reduced fibrosis and PSC activation Gibo et al., 2005 

(25) 

PPAR-γ  

/Thiazolidinediones 

Immortalised Rat PSCs Reduced PSC activation Jaster et al., 

2005 (38) 

Mucolytic/Bromhexine 

Hydrochloride 

12 human patients Improvement in pain and exocrine 

function 

Tsujimoto et al., 

2005 (97) 

Curcumin Cultured Rat PSCs Reduced activation and proliferation Masamune et 

al., 2006 (50) 

Green tea Isolated cultured rat 

PSCs 

Inhibited PSC activation Asaumi et al., 

2006 (8) 

COX-2  

/ Rofecoxib 

WBN/Kob Rats Reduction in macrophage infiltration 

and fibrosis 

Reding et al., 

2006 (76) 

MPTP / Tocotrienol 

(Vit. E derivative) 

Isolated Rat PSCs Induce Activated PSC death Rickmann et al., 

2007 (77) 

Interferon-γ Isolated Rat PSCs Reduce PSC activation Fitzner et al., 

2007 (22) 

Withdrawal of alcohol Rats fed alcohol diet for 

10 wks then LPS for 3 

wks 

Improvement in fibrosis and decreased 

PSC apoptosis 

Vonlaufen et al., 

2010 (100) 

Rapamycin DBTC & Cerulein Rats Reduced fibrosis, preservation of 

normoglycaemia 

Mayer et al, 

2012 (53) 

Collagen siRNA to 

PSC / 

VA-lip-siRNAgp46 

DBTC & Cerulein Rats,  Resolution of pancreatic fibrosis Ishiwatari et al., 

2013 (37) 

Rhein (anthraquinone 

deriv.) 

C57BL/6 mice Cerulein 

for 6 wks, Treatment 

given on induction and 

later at 4wks 

Decreased PSC activation and fibrosis 

in both intervention groups 

Tsang et al., 

2013 (96) 

ROS 

/ Edaravone 

DBTC Rat for 4 weeks; 

treatment after 2 weeks 

Reduced fibrosis, PSC activation and 

cytokine expression 

Zhou et al., 

2013 (119) 

ONO-1301 

(Prostacyclin 

analogue) 

DBTC rats, Treatment 

initiation at 1 wk, 

Sacrifice 2 & 3 wks 

Decrease in inflam. Infiltrate 2 wks & 

fibrosis 3 wks 

Niina et al., 

2014 (64) 

Apigenin (Flavonoid) C57BL/6 mice Cerulein 

Treatment initiation at 1 

wk, Sacrifice at 4 ks 

Decreased fibrosis and PSC activation Mrazick et al., 

2015 (58) 

IL-4/IL-13 C57BL/6 Cerulein,  

IL-4/IL-13 -/- mice, 

Human tissue 

Inhibition decreases alternatively 

activated macrophages and fibrosis 

Xue et al., 2015 

(112) 

 

Most have employed standard cerulein mouse models of CP with assays of pancreatic fibrosis and PSC activation 

most commonly used as endpoints to assess efficacy (studies in chronological order; DBTC = dibutyltin dichloride; 

MPTP = mitochondrial permeability transition pore; ROS = reactive oxygen species). 



7 

5. Primary parenchymal protection 

as a treatment strategy 

The repetitive and/or continuous injury of the 

pancreatic parenchyma inflicted by toxic, 

metabolic, genetic and other causes first and 

foremost damages the cells making up the vast 

majority of the parenchyma – the acinar cells – as 

well as the ductal cells (20). Both cell types are 

injured by fatty acid ethyl esters, non-oxidative 

metabolites of ethanol, and fatty acids that are 

implicated in alcohol-associated and 

hyperlipidaemic AP and CP (17, 18, 34, 49). Both 

induce cytosolic calcium overload that in turn 

induces mitochondrial calcium overload, 

compromising the supply of ATP and inhibiting 

autophagy that would otherwise clear the 

associated premature intracellular digestive 

enzyme activation. The compromise in ATP 

production occurs through excessive mitochondrial 

matrix calcium concentrations that induce the 

mitochondrial permeability transition pore, likely 

formed by the F0F1ATP synthase and regulated by 

cyclophilin D, allowing molecules <1500 Daltons to 

pass through the inner mitochondrial membrane 

(59). Mitochondrial membrane potential is lost, 

ATP production compromised and cellular necrosis 

results, inducing the necro-inflammatory 

sequences that drive AP and, likely with repetitive 

injury, CP. Similar events occur in 

hyperstimulation-induced AP and CP, exploited in 

the repetitive caerulein injection model of CP, the 

most widely used model (Table 2). The severity of 

both experimental AP and CP is dependent on the 

dose of the toxin and the number of times 

repeated. Treatments that either inhibit calcium 

entry into pancreatic parenchymal cells or protect 

mitochondria have been shown to be highly 

effective in experimental AP (59, 102), and could 

have a place in the treatment of CP. Thus inhibition 

of the principal store-operated calcium channel 

Orai1 has been shown to markedly reduce the 

severity of experimental AP and inhibition of 

cyclophilin D has almost removed all pathological 

consequences in some models of experimental 

AP. The latter strategy is especially attractive as 

cyclophilin D knockout is compatible with viability 

in utero and only a modest murine phenotype, 

whereas constitutive Orai1 knockout is not viable 

in utero. There is evidence that primary 

parenchymal protection is a workable strategy from 

studies of rapamycin in rats administered dibutyltin 

dichloride and cerulein to induce CP (53), which 

acts at least in part to protect the mitochondrial 

compartment (27, 72). Nevertheless the approach 

requires further preclinical validation and the 

development of agents that are safe and can be 

administered orally over prolonged periods, if not 

indefinitely. 

 

6. Cytokine inhibition 

Cytokines as signalling molecules play a major role 

in the pathogenesis of CP and while they may be a 

disparate group with many individual cytokines and 

are often pleiotropic, they remain key factors for 

cell-cell signalling and PSC activation and thus 

important potential targets for CP. Indeed, 

numerous strategies have been employed over the 

years to target cytokine signalling and attempt to 

develop treatments that might improve outcomes 

in CP.  

 

Transforming growth factor-β (TGF-β) is thought to 

regulate the production, degradation, and 

accumulation of extracellular matrix (ECM) 

proteins, and to play an important role in the fibro 

proliferative changes that follow tissue injury in 

many vital organs and tissues, including the heart, 

lung, kidney, and liver (14, 51). The importance of 

TGF-β signalling in the formation of fibrosis is 

underlined by experiments in transgenic mice 

overexpressing TGF-β1 in the pancreas (44, 80). 

These animals show histological changes that 

resemble human chronic pancreatitis including 

destruction of the exocrine pancreas and 

progressive accumulation of ECM in the pancreas. 

Pharmacological TGF-β inhibition holds promise 

as a treatment strategy. Halofuginone, an 

analogue of the plant alkaloid febrifugine, was 

recently tested in a cerulein experimental CP 

mouse model (120). Halofuginone was found to 

prevent cerulein-dependent increase in collagen 
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synthesis, collagen cross-linking enzyme P4HA, 

Cygb/STAP, and tissue inhibitors of 

metalloproteinase 2, through inhibition of serum 

response factor and the downstream TGF-β 

signalling component, Smad3 phosphorylation. 

Furthermore, in vitro cultured pancreatic stellate 

cell (PSC) proliferation and TGF-β dependent 

increase in Cygb/STAP and transgelin synthesis 

and metalloproteinase 2 activity was inhibited. Few 

specific TGF-β receptor kinase inhibitors exist 

however and while compounds such as SB-

431542 that are being developed for the treatment 

of neoplasia (30), are available, potential 

applications in CP of these inhibitors remain to be 

explored. Gene therapy has been assessed to 

specifically target TGF-β (61) and shall be 

discussed further in the next section. 

 

Interferons (IFNs) are multifunctional cytokines 

that block viral infection, modulate immune as well 

as inflammatory responses, and inhibit cell 

proliferation (92). IFN-α is an effective drug already 

established in clinical practice for the treatment of 

patients with chronic hepatitis B or C associated 

with liver fibrosis (63, 87), acting partly through an 

inhibitory effect on hepatic stellate cells (12, 89). 

However, conflicting evidence exists about their 

potential role in CP. IFN-γ, but not IFN-α has been 

demonstrated to display inhibitory effects on PSC 

proliferation and collagen synthesis in vitro using 

recombinant rat IFN on isolated rat PSCs, but IFN-

γ has been shown to decrease glucose stimulated 

insulin release from islet cells and thus potentially 

play a role in CP endocrine dysfunction (69).  IFN-

α in combination with ribavirin has been associated 

with drug-induced acute pancreatitis (19), so 

although IFNs may still be of potential use as novel 

treatments in the chronic form of the disease, 

further characterisation of their molecular effects is 

required before proceeding with further drug 

development. Similarly, TNF-α and IL-6 have both 

been demonstrated to be upregulated in CP and be 

involved in immune cell signalling as well as 

activation of quiescent PSCs (6) but modulating 

strategies using experimental and clinical anti-TNF 

(infliximab, golimumab) or anti-IL-6 (tocilizumab) 

agents (82) are yet to be explored in CP. The 

clinical use of licensed biologics, however, has 

increased in many inflammatory and other 

diseases over the last two decades such that this 

type of drug accounts for a major share of all drugs 

administered. Repositioning of a licensed drug or 

biological response modifier has many attractions, 

not least that the expense of drug development is 

substantially reduced.  

 

Recent evidence suggests that pharmacological 

inhibition of interleukin-4 (IL-4) and interleukin-13 

(IL-13) may hold significant potential in the 

treatment of CP. A very detailed and wide-ranging 

study was undertaken utilising in vitro, in vivo and 

ex vivo approaches, assessing both transgenic 

mouse models and human pancreatic tissue from 

CP patients, focussing on the interaction between 

alternatively activated macrophages (AAMs) and 

PSCs through IL-4/IL-13 signalling (112). The 

investigators found that AAMs are dominant in 

mouse and human CP and that they are dependent 

on interleukin IL-4 and IL-13 signalling. 

Furthermore they observed that mice lacking IL-

4Ra, myeloid-specific IL-4Ra and IL-4/IL-13 were 

less susceptible to pancreatic fibrosis, with mouse 

and human PSCs being a source of IL-4/IL-13. 

Finally, and probably most importantly, they 

showed that pharmacologic inhibition of IL-4/IL-13 

using IL-4/IL-13 blocking peptide administered half 

way through the course of an established mouse 

CP model as well as in human ex vivo studies, 

decreased pancreatic AAMs and fibrosis (112). 

Thus, as one of the most thorough studies 

published in the CP literature to date, the strategy 

of IL-4/IL-13 inhibition does hold promise as a 

novel treatment pipeline for CP and identifies other 

potential immune targets associated with AAMs 

that may also be considered for targeting. As an 

example of possibilities with this target, Regeneron 

has developed dupilumab, an inhibitor of IL-4Rα, 

which is at an advanced stage of development for 

atopic disease (103). There are thus significant 

possibilities for targeting cytokines in the treatment 

of CP (111), yet to be explored in a major way both 

experimentally and clinically. 
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7. Treatments based on natural 

compounds 

Natural products have in the past been a rich 

source of compounds for drug discovery, but their 

use has somewhat diminished, partly due to the 

technical barriers to screening natural products in 

high-throughput assays against molecular targets 

(31). Recent strategies have often employed 

natural product screening that utilize recent 

technical advances in genomic and metabolomics 

approaches to augment traditional methods of 

studying natural products with an appreciation of 

functional assays and phenotypic screens specific 

to the particular disease under consideration with 

the most applications till date in the fields of cancer 

and microbiology (10, 39). The use of natural 

products as a base to guide drug discovery for CP 

has been increasingly implemented over the last 

ten years (5, 92, 120) with a number of compounds 

showing promise in experimental CP models. 

Polyphenols, extracted from green tea, have been 

found to have inhibitory effects on isolated rat PSC 

activation and may be able to prevent the 

pancreatic fibrosis of CP (8).  Likewise, Curcumin 

(diferuloyl-methane), a natural product from the 

spice turmeric (26) has a variety of biological 

activities including anti-inflammatory (29, 93), 

antioxidant (75), antifibrotic (40, 73), and has 

previously been shown to inhibit activation of 

isolated PSCs in vitro (50). Vitamin A (retinol) and 

its metabolites all-trans retinoic acid (ATRA) and 9-

cis retinoic acid (9-RA) were found to significantly 

inhibit proliferation and activation of cultured PSCs 

(55). While further studies to evaluate these 

compounds in in vivo conditions are awaited a 

number of natural compounds have been explored 

in more detail in the setting of CP.  

 

Apigenin (4´,5,7-trihydroxyflavone) is a natural 

compound with low intrinsic toxicity, found in 

various fruits, vegetables, herbs, and beverages 

such as chamomile tea (90). A recent study 

reported apigenin treatment in a standard cerulein 

model of experimental CP, inhibited PSC 

proliferation, induced PSC apoptosis and 

minimized parathyroid hormone related peptide 

(PTHrP)-mediated PSC response to injury (58). 

Furthermore novel analogues of Apigenin are 

under development with chemical modifications 

directed to build a focused library of O-alkylamino-

tethered apigenin derivatives at 4’-O position of the 

ring C with the aim of enhancing the potency and 

overall drug-like properties including aqueous 

solubility (15). 

 

Rhein is a natural anthraquinone derivative, also 

known chemically as 9,10-Dihydro-4, 5-dihydroxy-

9, 10-dioxo-2-anthracenecarboxylic acid, that can 

be extracted from roots of Polygonaceae (rhubarb) 

(96). This yellow crystalline rhubarb extract has 

been serving as a mild laxative agent as well as an 

astringent since ancient times in the Chinese 

population (113). In recent decades, administration 

of rhein in the range of 25 to 100 mg/kg/day has 

been demonstrated to exert diverse 

pharmacological actions including anti-microbial 

(101), anti-angiogenic (32) and anti-cancer 

activities (114). Rhein when administered at 50 

mg/kg/day half way through the course of an 

experimental cerulein CP mouse model was able 

to reverse fibrotic outcomes and when 

administered in vitro was found to attenuate PSC 

activation and suppress sonic hedgehog (SHH) 

signalling (96). 

 

Recent evidence suggests that the mitochondrial 

permeability transition pore (MPTP), a gatekeeper 

for cell death pathways in the injured cell, may be 

a crucial target for drug discovery in AP (59), 

however as indicated previously (section 5) its 

potential use in CP is yet to be fully explored. 

Tocotrienol (α, β, γ, δ) along with tocopherol (α, β, 

γ, δ) stereoisomers represent the two naturally 

occurring subclasses of vitamin E compounds. 

Although the diet of millions of people includes 

tocotrienol- rich foods such as palm oil or rice bran, 

more than 95% of the scientific literature on vitamin 

E has focused exclusively on α-tocopherol (88). 

Despite some previous concerns on their 

bioavailability, it is now clear that dietary 

tocotrienols are well absorbed, show measurable 

plasma levels (42) and are readily distributed 
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throughout the tissues (68). Accumulating 

evidence suggests that tocotrienols display greater 

beneficial effects than α-tocopherol because of 

their prominent antineoplastic, neuroprotective, 

cardioprotective, and cholesterol-lowering 

properties (88). A recent study using a tocotrienol 

rich fraction (TRF) from palm oil found that TRF, 

but not α-tocopherol, reduced viability of activated 

PSCs (not quiescent PSCs or isolated acinar cells) 

in vitro through apoptosis and autophagy and 

caused a sustained mitochondrial membrane 

depolarization and extensive cytochrome c release 

that was completely abolished with the MPTP 

inhibitor cyclosporine A (77).  

 

Although the findings from drugs developed based 

on natural compounds on isolated PSCs show 

promise (77), one must remember that these 

findings along with many others using natural 

compounds on only isolated cells, require 

validating in experimental CP models as well as 

ultimately human CP. The main challenge remains 

in refining compounds with regards to specificity for 

cell type and specificity of action, and this should 

remain the main focus of ongoing research. 

 

8. Gene therapy strategies 

Gene therapy strategies provide a distinct 

advantage in terms of treatment specificity and 

have been utilised in various CP studies. While 

pharmacological inhibition of TGF-β inhibition has 

previously been considered, inhibition employing 

an adenoviral vector expressing the entire 

extracellular domain of type II human TGF-β 

receptor (AdTβ-ExR) on a cerulein mouse model of 

experimental CP has also been tested (61). The 

study evaluated pancreatic fibrosis, PSC 

activation, apoptosis and proliferation of acinar 

cells, by histology and immunostaining and found 

in AdTβ-ExR-injected mice, pancreatic fibrosis was 

significantly attenuated with a reduction of 

activated PSCs and apoptotic acinar cells but no 

change on proliferation (61). Targeted encephalin 

gene therapy has been shown to reduce pain in 

experimental CP (104), but is unlikely to modify 

disease progression. Further research indicates 

that gene therapy may hold potential promise 

specifically in CP patients carrying a CFTR 

mutation (11). Use of this strategy in other chronic 

inflammatory diseases (such as primary Sjögren 

syndrome), using exogenous gene delivery of 

aquaporin water channels into the parotid glands 

of patients, has been successfully applied to treat 

the dry mouth symptoms that form part of the 

condition (115). As an aside, the changes of 

pancreatic ductal fluid and ion concentration in 

pancreatitis are very similar to the mechanisms 

visible in cystic fibrosis (CF) (11). Therefore, drugs 

which are effective in CF may can have benefits for 

patients suffering with CP, such as bromhexine 

hydrochloride, a bronchial mucolytic, that when 

administered to 12 patients with alcoholic CP 

showed improvements in symptoms and exocrine 

function (97).  

 

Clearly like many other conditions, while having the 

advantage of being specific in nature, adopting 

gene therapy as an approach in CP remains 

challenging. This strategy is open to various 

potential drawbacks that have been discussed in 

length in the recent literature: CP is a multifactorial 

disorder with a polygenic predisposition; long term 

outcomes remain unclear posing a number of 

ethical issues; risks may exist from induction of 

tumour growth; initiation of the endogenous 

immune response and the use of viral vectors for 

gene transmission may carry risk (41). 

 

A strategy that harnesses the benefits of specific 

genetic technologies and bypasses the problems 

that may be associated with viral adenovectors is 

the use of small interfering RNA (siRNA) to target 

a relevant mRNA, key to the pathogenesis of CP, 

for degradation. Previous studies have 

demonstrated that siRNA against collagen-specific 

chaperone protein gp46, encapsulated in vitamin 

A-coupled liposomes (VA-lip-siRNAgp46), 

resolved fibrosis in a model of liver cirrhosis (81). 

Subsequently the treatment was assessed as a 

treatment for pancreatic fibrosis in experimental 

dibutyltin dichloride (DBTC) and cerulein induced 

CP in rats (37). The experimenters were able to 

demonstrate specific uptake of VA-lipsiRNAgp46 
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by conjugation with 60-carboxyfluorescein (FAM) 

followed by immunofluorescence showing uptake 

through the retinol binding protein receptor by 

activated PSCs in vitro, accompanied by 

successful knockdown of gp46 and suppression of 

collagen secretion. The technique allowed specific 

delivery of VA-lip-siRNAgp46 to PSCs in fibrotic 

areas in DBTC rats with 10 systemic treatments 

resolving pancreatic fibrosis, and suppressing 

tissue hydroxyproline levels in both models (37). 

While full translation of such siRNA strategies to 

the clinical setting remains some distance away, 

this study provides the first key demonstration of 

successful targeting of an antifibrotic drug to cells 

known to be responsible for pancreatic fibrosis and 

creates hope that similar strategies may be 

employed, potentially with other similar or even 

contrasting drug targets, to alter the course of CP. 

 

9. Other approaches 

A number of other drugs and strategies have been 

recently explored as treatments for CP with some 

promising findings. Camostat mesilate (CM), an 

oral protease inhibitor, has been used clinically for 

the treatment of chronic pancreatitis in Japan (25). 

This is mainly based on the theoretical benefit of 

decreasing prematurely activated trypsinogen in 

the pancreas, that is a key feature of acute acinar 

cell injury from a variety of pancreatic toxins (78). 

Interestingly, CM has been shown to attenuate 

DBTC-induced rat pancreatic fibrosis probably via 

inhibition of monocytes and PSC activity (25). 

However, a recent study employing transgenic 

mice conditionally expressing an endogenously 

activated trypsinogen within pancreatic acinar cells 

demonstrated that trypsin-mediated injury was 

sufficient for AP, but in the absence of other factors 

was not sufficient to drive pancreatic fibrosis and 

CP, raising questions as to the utility of protease 

inhibition as a strategy in CP (24).  

 

Cyclooxygenase (COX) is an enzyme that 

produces prostaglandins, such as prostacyclin and 

thromboxane, with COX-2 being unexpressed 

under normal conditions in most cells but elevated 

during inflammation.  Modulation of prostaglandins 

in CP has produced some conflicting findings. 

Numerous chronic inflammatory diseases can be 

successfully suppressed by COX-2 inhibitors (52) 

and COX-2 is elevated in CP (83). A recent study 

assessed administration of the selective COX-2 

inhibitor, rofecoxib, on an experimental model of 

CP (WBN/Kob rat) with a reduction in chronic 

inflammatory changes and fibrosis following 

treatment with in vitro studies suggesting migration 

of macrophages in CP conditions to be COX-2 

dependent (76). This would suggest a beneficial 

effect from the reduction of prostaglandins, 

including prostacyclin, for CP, in line with other 

inflammatory conditions. However understanding 

this treatment strategy remains complex as a 

further recent study using ONO-1301, a novel 

sustained-release prostacyclin analogue shown to 

have anti-fibrotic effects in other organs, resulted 

in an improvement in fibrosis in a dibutylin chloride 

(DBTC) rat model of CP although in vitro studies 

showed no effect of ONO-1301 on PSCs (64). 

Clearly, COX-2 inhibition will lead to a decrease of 

prostaglandins other than prostacyclin, such as 

thromboxane, and this may be responsible for an 

overriding beneficial effect observed by this 

treatment strategy. Overall, these studies highlight 

that further characterisation of this mechanistic 

pathway in the setting of CP is required to guide 

better drug development. 

 

Braganza first proposed that CP arose as a result 

of oxidative stress and that a deficient free radical 

quenching system combined with excess free 

radical production led to cellular injury (98). 

Reactive oxygen species are known to be involved 

in PSC activation (4) and theoretically play an 

important role in pathogenesis of CP. Braganza et 

al. (98) reasoned that exogenous supplementation 

with antioxidants or precursors for antioxidant 

pathways might help to reduce ongoing acinar 

injury. After a small randomized trial of selenium, 

β-carotene, vitamins C and E, and methionine-

based antioxidant therapy reported a reduction in 

severity and frequency of episodes of pain in 

patients with recurrent and chronic pancreatitis, a 

commercially available formulation was developed, 

however, antioxidant therapy for chronic 
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pancreatitis has not become accepted as standard 

therapy, with recent trials suggesting 

administration of antioxidants to patients with CP 

does not improve quality of life (91) and a recent 

Cochrane review suggesting they may have only a 

small beneficial effect on pain (1).  

 

Many lessons can be learnt from the antioxidant 

treatment pipeline that can be implemented for 

other future strategies that may involve targets and 

compounds previously outlined in this review: the 

timing of intervention in the pathological process of 

fibrogenesis remains crucial and studies allowing 

cross-comparability of interventional time points in 

preclinical studies with human CP are further 

required; trials must use standardised clearly 

defined criteria for diagnosis of CP and hence the 

inclusion of the most appropriate patients in trials; 

the composition of test compounds must be refined 

and standardised with multiple constituent 

strategies causing inevitable difficulties in cross-

comparison between studies; relevant disease 

outcome measures must be standardised and 

caution must be exercised in interpretation of 

subjective measures, such as pain and quality of 

life scores, alongside objective measures such as 

endocrine and exocrine insufficiency. 

 

10. Conclusion 

Multiple novel treatment pipelines have been 

identified by preclinical studies in CP over the last 

decade (Figure 2), with recent investigation 

focussed on parenchymal protection, 

immunomodulation and PSC inhibition as 

strategies to reduce pancreatic injury and fibrosis 

(118) and reduce the symptomatic and long-term 

impacts of the disease. Ultimately, whether these 

promising preclinical findings can have an impact 

on human CP will depend on translation through 

well-structured and co-ordinated clinical trials. 

Trials, to date, have not provided any disease-

course altering specific treatments, with many 

promising compounds still to be tested. There 

remains many pharmacological challenges in 

human CP however, that must be overcome for 

effective translation of preclinical findings. Drug 

absorption in patients with chronic pancreatitis 

might be affected by the pathophysiology of the 

disease, with exocrine insufficiency associated 

with changes in gastrointestinal intraluminal pH, 

motility disorder, bacterial overgrowth and 

changed pancreatic gland secretion, resulting in 

potential malabsorption (66). Coupled with this, the 

lifestyle of CP patients may also contribute to these 

pharmacological challenges with many patients 

limiting their food intake due to pain caused by 

eating that will affect drug absorption and 

compliance, as well as alcohol and drug 

interactions known to influence pharmacokinetics 

(66). Nevertheless, much hope still exists that 

future research will provide successful treatments. 

These treatments will likely originate from pre-

identified or novel drug targets based on a 

thorough understanding of pathogenesis, 

accompanied by clever drug design sensitive to the 

challenging group of CP patients, supported by 

sufficiently large and well-conducted clinical trials, 

with focussed research to translate from bench to 

bedside. 

 

Acknowledgement  

We acknowledge funding support from CORE, the 

UK Medical Research Council and the Biomedical 

Research Unit Funding scheme of the UK National 

Institute for Health Research. Robert Sutton is an 

NIHR Senior Investigator. 

 

 

 



13 

 
Figure 2. Summary of novel treatment pipelines for CP. Numerous agents tested in the pre-clinical setting have 

been shown to be efficacious in improving experimental CP outcomes (predominantly PSC activation and 

histopathological evidence of pancreatic fibrosis) with many agents chiefly acting through modulation of either 

immune pathways, PSC activation or both. Alcohol may act indirectly through repeated acinar cell injury or directly 

on PSCs to exert its deleterious effects. Recent evidence suggests an amplifying loop exists between alternatively 

activated macrophages and PSCs in CP through IL-4/IL-13 signalling, offering another therapeutic target. 
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