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1. Importance of the pancreatic 
ductal HCO3

- secretion 

The exocrine pancreas secretes ~ 1.5 L of 
alkaline, isotonic fluid, which washes the digestive 
enzymes from the lumen of the pancreatic ducts 
and neutralizes the acidic gastric content entering 
the duodenum (4, 24). This alkaline pancreatic 
secretion plays an important role in the physiology 
and pathophysiology of the gland protecting the 
pancreatic tissue from damage. Findings from the 
last two decades supported this hypothesis and 
highlighted that the pancreatic acinar cells will 
suffer severe damage, if the pancreatic ductal 
secretion is impaired. Freedman et al. observed 
that in cftr knockout mice the pancreatic ductal 
secretion is impaired resulting in a more acidic 
(pH 6.6±0.04) pancreatic juice compared to wild 
type animals (pH 8.12±0.06) (13). In addition, the 
lack of cystic fibrosis transmembrane 
conductance regulator (CFTR) Cl- channel activity 
caused a defect in the apical membrane transport 
of the acinar cells. The findings of Reber et al. 
showed that in cat pancreas, the basal 
parenchymal pH was ~7.35, which decreased to 
~7.25 after the induction of chronic pancreatitis 
(35). Moreover, ethanol administration decreased 
the extracellular pH of the pancreatic tissue to 

~7.1 and reduced pancreatic blood flow to 40%. 
In a rat model, the development of acute 
pancreatitis (AP) was affected by the pH of the 
contrast solution during endoscopic retrograde 
cholangiopancreatography (28). Contrast solution 
at pH 6.0-6.9 injected into the main pancreatic 
ducts induced pancreatic oedema, increased 
serum amylase activity, neutrophil infiltration, and 
histological damage. The pancreatic injury 
correlated with the lower pH. On the other hand, 
pH 7.3 solution caused only mild pancreatic injury. 
Bhoomagoud et al. showed that the decrease of 
the extracellular pH from 7.6 to 6.8 augmented 
secretagogue-induced zymogen activation and 
acinar cell injury in vitro and enhanced cerulein-
induced trypsinogen activation and pancreatic 
oedema in vivo (5). Our group further proved the 
importance of the pancreatic ductal secretion, 
since we demonstrated that the autoactivation of 
trypsinogen is a pH dependent process, with 
accelerated autoactivation on acidic pH meaning 
that HCO3

- secretion protects the pancreas from 
untimely trypsinogen autoactivation (31). 
Evidence suggests that the decreased pancreatic 
ductal bicarbonate secretion can affect the 
severity of AP (see below).  
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2. Mechanism of the bicarbonate 
secretion in pancreatic ductal cells 

The major site of the fluid and HCO3
- secretion 

are the pancreatic ductal epithelial cells (PDEC) 
of the small intercalated and intralobular ducts (6). 
The maximal HCO3

- concentration in the ductal 
lumen can vary among species; importantly 
human PDEC can produce 140 mM maximal 
intraluminal HCO3

- concentration as can guinea 
pigs (4).  
 
The complex process of pancreatic ductal HCO3

- 
secretion can be divided into two steps: the 
accumulation of HCO3

- across the basolateral 
membrane followed by the secretion via the apical 
membrane into the lumen. The basolateral 
accumulation of bicarbonate is mediated by the 
Na+/HCO3

- cotransporter (NBCe1-B), which 
operates with 1 Na+ and 2 HCO3

- stoichiometry 
(17). The passive diffusion of CO2 through the 
basolateral membrane may also contribute to the 
HCO3

- accumulation, which is followed by the 
carbonic anydrase mediated conversion of CO2 to 
HCO3

- (12). On the luminal membrane of the 
PDEC, the molecule central to HCO3

- secretion 
are the electrogenic Cl-/HCO3

- exchangers 
(SLC26A6 and possibly A3, which operates with a 
1 Cl- : 2 HCO3

- stoichiometry) (39). Another 
important protein is the CFTR Cl- channel, which 
plays an important role in the ductal HCO3

- 
secretion in humans and animals, which produce 
a high intraluminal HCO3

- concentration (45). This 
electrogenic apical Cl-/HCO3

- exchange allows 
PDEC to transport HCO3

- into the ductal lumen 
and establish 140 mM intraluminal HCO3

- 

concentration during stimulated secretion (4, 24). 
The details and the molecular background of the 
pancreatic ductal HCO3

- secretion have been 
reviewed recently elsewhere (1, 24, 27).  
 
 

 

3. Effects of ethanol and ethanol 
metabolites on the pancreatic ductal 
bicarbonate secretion 

One of the most common causes of AP is heavy 
alcohol abuse. The inhibitory effect of alcohol on 
pancreatic secretion was first suggested decades 
ago (16). In experimental studies, Yamamoto et 
al. found that 0.3-30 mM ethanol augmented, 
whereas 100 mM ethanol inhibited secretin-
stimulated pancreatic ductal fluid secretion in the 
guinea pig (44). In the latter study, the authors 
focused on the effects of ethanol; however, 
numerous investigations have highlighted the 
harmful effects of different ethanol metabolites in 
different organs. In vivo ethanol metabolism is 
mediated by two independent pathways (23, 33). 
The oxidative pathway is predominant in the liver 
and generates acetaldehyde, whereas, the non-
oxidative pathway combines ethanol and fatty 
acids (FA) and produces fatty acid ethyl esters 
(FAEE) in the pancreas, brain and heart, tissues 
typically damaged by excessive ethanol 
consumption (23). Compared with the liver, FAEE 
synthase activity in the pancreas is greater 
creating the possibility for the local accumulation 
of non-oxidative ethanol metabolites (15). FAEE 
can also be hydrolyzed leading to the intracellular 
accumulation of FA, which can strongly bind to 
mitochondrial membrane proteins and thus 
uncouple oxidative phosphorylation (22). Clinical 
studies (43) and experimental animal models 
suggest that ethanol administration in vivo does 
not induce pancreatitis by itself but sensitizes the 
pancreas to other triggers (32). Ethanol was 
shown to destabilize lysosomes and zymogen 
granules (42), to sensitize pancreatic 
mitochondria to activate mitochondrial 
permeability transition pore leading to 
mitochondrial failure (38), to modulate the 
immune response via sensitizing NF-κB activation 
in pancreatic acinar cells (37) and to cause 
oxidative ER stress, which activates an unfolded 
protein response and increases XBP1 levels and 
activity (25). Criddle et al. found that FAEE and 
FA, but not ethanol cause pancreatic acinar cell 
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damage via sustained intracellular Ca2+ elevation, 
mitochondrial dysfunction, ATP depletion and 
intraacinar trypsinogen activation leading to cell 
necrosis (7, 8, 14, 34). Ethanol metabolites were 
also shown to perturb exocytosis processes in 
cultured rat pancreatic acini causing apical 
blockade and basolateral exocytosis (11). 
Moreover, Werner et al. showed that FAEE 
infusion induced significant increases in 
pancreatic edema, trypsinogen activation, and 
vacuolization of acinar cells (41). Recently the 
role of stellate cell activation has also been 
highlighted in the ethanol induced pancreatic 
injury (3); however, there is no direct evidence 
concerning the involvement of ductal epithelial 
cells in the pathogenesis of alcohol -induced 
pancreatitis.  
 
Importantly, Sarles at al. described that the initial 
lesion in course of pancreatic damage during 
alcohol-induced chronic calcifying pancreatitis is 
the formation of mucoprotein plugs  in the small 
pancreatic ducts (36). Besides this, the sweat 
chloride and sodium concentration of these 
patients were also significantly elevated 
compared to the control group (36). These 
changes are very similar to the alterations of the 
exocrine pancreas in cystic fibrosis, the most 
common genetic disorder in the Caucasian 
population, which was shown to cause exocrine 
pancreatic insufficiency (21) and increased risk of 
pancreatitis (29).  Although the observations of 
Sarles are more than 50 years old, the connection 
of ethanol induced pancreatic damage and ductal 
secretory dysfunction has not been investigated in 
details yet.  
 
Recently, we demonstrated using several 
overlapping in vivo and in vitro experimental 
methods that ethanol and FA dose-dependently 
reduced CFTR expression and activity in PDEC, 
and inhibited secretion of fluid and HCO3

- in the 
pancreas (18, 26). We observed that the sweat Cl- 
concentration (Cl-sw) was significantly elevated 
after heavy alcohol intake in human subjects; 
however, the Cl-sw normalized when the patients 
were sober (26). In human tissue samples from 

patients suffering from alcohol-induced acute or 
chronic pancreatitis, we detected a significant 
decrease of CFTR expression at the apical 
membrane of the pancreatic ducts. Interestingly, 
in experimental models we found that low 
concentration (10 mM) of ethanol stimulated both 
the apical Cl-/HCO3

- exchange and the CFTR 
channel activities. However, at high concentration 
(100 mM) a strong inhibitory effects were detected 
on HCO3

- secretion, CFTR activity and pancreatic 
fluid secretion in vivo and in vitro. This dual effect 
of ethanol is very similar to the dose-dependent 
effects of non-conjugated bile acids on the 
pancreatic ductal functions (40). Similarly to 100 
mM ethanol, FA impaired pancreatic fluid and 
HCO3

- secretion. The oxidative ethanol metabolite 
acetaldehyde and FAEE had no such effects. The 
inhibition of CFTR by ethanol and FA was 
associated with a sustained increase in 
concentrations of intracellular Ca2+ and decreased 
3',5'-cyclic adenosine monophosphate (cAMP) 
levels, mitochondrial membrane depolarization, 
and a consequent drop of intracellular ATP levels. 
Intracellular ATP supplementation via a patch 
pipette almost completely prevented inhibition of 
CFTR activity by ethanol and FA (18). We also 
showed that the decrease in CFTR expression 
and plasma membrane density in response to 
ethanol, palmitoleic acid, or palmitoleic acid ethyl 
ester administration was caused by the 
combination of accelerated plasma membrane 
turnover at the apical membrane and by damaged 
protein folding in the endoplasmic reticulum (26).  
 
4. Alcohol-induced CFTR 
dysfunction in the pathogenesis of 
pancreatic damage 

As demonstrated above high concentrations of 
above ethanol and ethanol metabolites have a 
strong inhibitory effect on the pancreatic HCO3

- 
and fluid secretion via the reduced function and 
expression of CFTR (Figure 1). In addition to 
these experimental observations, other data 
suggest that CFTR function can affect the 
pathogenesis and severity of AP.  
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Figure 1. The effects of ethanol and ethanol metabolites on pancreatic ductal function. Under physiological 
conditions, CFTR Cl- channel (red) is expressed on the luminal membrane of small inter/intralobular pancreatic 
ducts and contributes significantly to the pancreatic HCO3

- secretion, which maintains the alkaline intraluminal pH. 
During acute or chronic alcohol-induced pancreatitis, the function and expression of CFTR is markedly reduced 
by ethanol and ethanol metabolites, which leads to impaired HCO3

- and fluid secretion and consequently 
decreased intraluminal pH. Under these conditions, the wash out of the luminal content is insufficient promoting 
the formation of intraluminal protein plugs. The intraductal obstruction will lead to intrapancreatic enzyme 
activation in acute pancreatitis and to pancreatic atrophy and exocrine pancreatic insufficiency in chronic 
pancreatitis. 
 
DiMagno et al. showed that deletion of CFTR 
results in continuous overexpression of 
proinflammatory cytokine genes, moreover these 
mice develop more severe AP upon cerulein 
hyperstimulation compared to wild type animals 
(9). They observed elevated pancreatic edema, 
neutrophil infiltration and mRNA expression of 
multiple inflammatory mediators; however, acinar 
cell injury was not different. On the other hand 
acinar cell apoptosis in cftr knockout mice was 
decreased in cftr knockout mice, which also had 
mild exocrine pancreatic insufficiency (as pointed 
out by impaired in vivo pancreatic secretion in 
response to cholecystokinin and reduced 
pancreatic digestive enzyme protein and mRNA 
levels). These results were reproduced in ΔF508 
cftr mutant mice (10). These observations are 
important, although the authors focused on the 

alterations of acinar cells, whereas CFTR is 
expressed on the apical membrane of pancreatic 
ductal cells. The lack of pancreatic CFTR 
expression impairs the ductal fluid and 
bicarbonate secretion and any alterations of the 
acinar cells might be presumably indirect. 
Recently, our group demonstrated that cftr 
knockout mice displayed more severe AP induced 
by i.p. injection of ethanol and palmitic acid (26). 
All laboratory and histological parameters were 
significantly elevated in cftr knockout mice 
compared to wild type controls, including the 
extension of necrosis. These data have potential 
clinical relevance as well, since we detected 
markedly decreased CFTR protein and mRNA 
expression in small pancreatic ducts using 
pancreatic tissue samples from patients 
diagnosed with alcohol-induced AP (26). Another 
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study by Pallagi et al. confirmed the potential role 
of CFTR and pancreatic ductal secretion in the 
pathogenesis of AP (30). In the latter study, 
Na+/H+ exchanger regulatory factor-1 (NHERF-1, 
a cytosolic scaffolding protein involved in the 
apical targeting and retention of membrane 
proteins) knockout mice were used, which had 
lower CFTR expression in the apical membrane of 
pancreatic ducts and lower pancreatic 
bicarbonate and fluid secretion. Cerulein 
hyperstimulation and sodium taurocholate infusion 
into the pancreas induced more severe 
pancreatitis further confirming the importance of 
CFTR-mediated pancreatic secretion. 
 
On the other hand, alcohol-induced CFTR 
dysfunction and therefore impaired HCO3

- 
secretion seems to be involved not just in the 
pathogenesis of AP, but also in chronic 
pancreatitis (CP). In CP, the destruction of the 
pancreas can be observed due to chronic 
inflammation, exocrine pancreatic insufficiency, 
decreased pancreatic fluid and bicarbonate 
secretion, fibrosis and calcification of the tissue. 
As an underlying mechanism for the decreased 
secretion, CFTR dysfunction due to mislocalised 
protein expression in pancreatic ductal cells has 

been observed in different forms of CP. Using 
human pancreatic tissue samples, Ko et al. 
described that CFTR is mislocalised in alcoholic, 
obstructive and idiopathic chronic pancreatitis as 
well similarly to our results (20). The decreased 
expression of CFTR, observed in different forms 
of chronic pancreatitis, could explain the impaired 
function of the PDEC (20). The impaired fluid and 
HCO3

- secretion lead to decreased intraluminal 
pH, decreased wash out of the digestive enzymes 
and more viscous, protein-rich ductal fluid (Figure 
1) (19). These changes promote the formation of 
intraluminal protein gel, or plugs that are one of 
the earliest histological features of chronic 
pancreatitis (36). The intraductal obstruction can 
lead to pancreatic atrophy, ductal mucinous 
hyperplasia (2), Goblet-cell metaplasia and the 
protein plugs might also underlie pancreatic stone 
formation (19).  
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