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Abstract 

In 1928, Ivy and Oldberg discovered that intestinal 
extracts prepared after instilling weak acid or fats 
into the proximal duodenum, elicited gallbladder 
contraction in dogs, cats, and guinea pigs (33). 
Based on this biological property, the hormone was 
named cholecystokinin (CCK). In addition to 
gallbladder contraction, CCK was later shown to 
stimulate pancreatic secretion (55) and to delay 
gastric emptying by its effect on the lower 
esophageal sphincter (80). CCK was the first 
hormone shown to influence satiety and cause 
reduction in food intake (23). Due to this discovery 
and the implications of CCK’s therapeutic potential 
for eating disorders, considerable attention has 
focused on the study of this hormone. 
 
In the gastrointestinal tract, CCK is secreted by 
discrete enteroendocrine cells (EECs) which 
contain intermediate-size secretory granules (I 
cells) (95). CCK-producing cells are primarily 
located in the proximal small intestine (duodenum 
and jejunum, Figure 1), and their numbers 
decrease significantly towards the distal end (ileum 
and colon) (Figure 2). CCK cells are often flask-
shaped with the narrow apical edge facing the gut 

lumen. The basolateral membrane often contains 
one or more basal process(es) named neuropods 
that run alongside or project into the lamina propria 
(6, 10). Neuropods contain neuronal markers and 
have been shown to interact with enteric nerves 
suggesting that in addition to secretion to the 
blood, CCK can be released directly adjacent to 
enteric nerves (Figure 3). CCK immunoreactivity is 
abundant in the pyloric region of mouse stomach 
(45), cerebral cortex, dopaminergic neurons 
projecting to the limbic forebrain and ventromedial 
hypothalamus, peripheral nerves of the 
gastrointestinal tract, celiac plexus, and vagus 
nerve (2, 48). CCK has been shown to function 
both as a hormone and a neurotransmitter and 
belongs to the ‘brain-gut’ family of peptides. In 
addition to intestinal and neuronal expression, 
CCK is also expressed in other tissues such as the 
urogenital tract and heart (78). The structure of 
CCK and its function, pertaining to its role in the 
gastrointestinal tract, is discussed in this review. 
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Figure 1.  Transverse section of mouse duodenum 
showing CCK cells (green). Nuclei are stained with 
DAPI (blue).  

 

 
Figure 2.  The number of CCK cells is highest in the 
proximal small intestine of the mouse and decreases 
exponentially towards the distal end (ileum). CCK 
antibody (8) used for immunostaining sections did not 
react with gastrin. Number of cells in 5 sections spread 
over 1 inch in length were counted (R. Chandra, 
unpublished data). 

 

 
 
Figure 3.  Transverse section of CCK-EGFP mouse 
duodenum showing EGFP positive CCK cells (green) 
and enteric nerves immunostained for pan-neuronal 
marker PGP9.5 (red). Two CCK cells from the left panel, 
Cells A and B, are shown at higher magnification on the 
right. Cell A has three short whisker-like neuropods and 
its basolateral surface is in contact with enteric nerves. 
Cell B has 2 thin neuropods (arrows). The longer of the 
two neuropods terminates in a bulb and is in contact with 
a nerve. 

1. General 

CCK is present in all vertebrates from fish to 
mammals. A CCK-like peptide has been found in 
the protochordate Ciona intestinalis, suggesting 
that the CCK/gastrin family probably arose 500 
million years ago (37). Based on the phylogeny of 
CCK and gastrin genes in protochordates versus 
cartilaginous fish such as Squalus acanthias, and 
amphibians, it is proposed that gene duplication 
occurred 350 million years ago during the 
appearance of cartilaginous fish (37, 38). In 
humans, the CCK gene is present on chromosome 
3, spans 7 kb, and consists of three exons, the first 
of which is noncoding (87, 88). The mouse Cck 
gene is similar in structure to the human gene and 
is present on chromosome 9 in a syntenic cluster 
(21). 
 
CCK polypeptides of various lengths have been 
described in the literature (Figure 4). Although 
there are four known transcripts of the human CCK 
gene, only a single preprocholecystokinin 
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polypeptide of 115 amino acids is synthesized. 
After proteolytic excision of the signal peptide by 
signal peptidase, procholecystokinin of 94 amino 
acids is generated. This is again cleaved on both 
the N (24 amino acids) and C (12 amino acids) 
termini by endopeptidase and proprotein 
convertase 1 respectively, to generate a mid-
section polypeptide of 58 amino acids known as 
CCK-58, which is the largest known circulating 
form of the hormone (19). It contains a carboxyl-
amidated phenylalanine and O-sulfated tyrosine 
residue, which is responsible for increasing its 
biological activity by approximately 100-fold (18, 
76, 77). CCK-58 undergoes subsequent 
endopeptidase cleavage at single or double basic 
residues to generate shorter peptides, CCK-39, 
CCK- 33, CCK-22, CCK-12 and CCK-8 (3, 84). 
CCK-8 is the smallest peptide which exhibits 
complete biological activity and is used most often 
in experiments for assessing CCK function. The 
five C-terminal residues of CCK are identical to 
gastrin, and as a result these two hormones display 
some functional similarities. This sequence identity 
complicated the measurement of CCK in the blood, 
as many antibodies against CCK-8 cross react with 

gastrin which is present at much higher 
concentrations in the blood (5). 
 
Regulation of CCK secretion 

CCK is released from EECs in response to entry of 
food into the duodenum. Plasma levels of CCK 
increase from basal levels of 0.5-1 pM to peak 
levels of 5-15 pM within a few minutes of food 
ingestion. In rodents, peak plasm levels are usually 
attained within 20 minutes of oral gavage. In 
humans, postprandial levels remain elevated for 3-
5 hours until food empties from the stomach into 
the duodenum (57). Therefore, gastric emptying 
affects CCK secretion.  Plasma CCK levels decline 
once food passes from the proximal small intestine. 
The half-life of CCK in the plasma is very short; in 
dogs the half-life of CCK-58 was 4.4 ± 0.6 minutes 
and that of CCK-8 was shown to be 1.3 ± 0.1 
minutes (32). CCK is cleared from the circulation 
as it passes through the liver and by neutral 
endopeptidases in capillary endothelial cells (71). 
CCK secretion is stimulated by ingested fats, 
proteins, and amino acids, whereas carbohydrates 
such as glucose cause only a brief, transient 
increase in circulating CCK levels (57). 

 
 
Figure 4.  Amino acid structure of the human CCK precursor and the different forms of CCK produced by 
processing. 
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The apical surface of CCK-producing cells is 
exposed to the intestinal lumen and receptors 
located on the apical surface can be stimulated by 
food molecules present in the lumen. Aromatic L-
amino acids such as phenylalanine and tryptophan 
(but not non-aromatic amino acids such as alanine) 
stimulate CCK release through a Ca2+-dependent 
mechanism mediated by the calcium-sensing 
receptor (CaSR) (61, 94) while L-phenylalanine, L-
leucine, and L-glutamic acid mediate CCK release 
through umami taste receptors T1R1 – T1R3 (14). 
In addition to amino acids, medium to long chain 
fatty acids (C12 and longer) also stimulate CCK 
release (65). The long chain fatty acid receptor 
GPR40 also known as free fatty acid receptor 1 
(FFAR1), mediates some fatty acid-dependent 
CCK secretion (62). Fat meditated CCK-
stimulation was completely eliminated in 
immunoglobulin-like domain containing receptor 1 
(ILDR1) knockout mice suggesting that ILDR1 
plays a role in CCK release (13). ILDR1-mediated 
CCK release occurred only in the presence of both 
high density lipoprotein (HDL) and fatty acids, 
suggesting a novel pathway in which uptake of 
HDL and/or fatty acid from the basolateral 
membrane could play an important role in CCK 
release. 
 
Evidence is accumulating that cell surface 
receptors linked to hormone secretion may be 
located on the basolateral surface of the CCK cell. 
ILDR1-mediated CCK release requires both fatty 
acids and HDL which are most likely secreted onto 
the basolateral surface of the intestinal epithelium 
suggesting that CCK cells respond to absorbed 
nutrients (13). In addition, bile acid receptors have 
also been localized to the basolateral surface of 
EECs (8).  
 
CCK secretion is under the control of negative 
feedback regulation by pancreatic proteases and 
bile acids (25, 56, 70). In most species, including 
humans, it has been shown that food-stimulated 
CCK secretion is suppressed by release of 
pancreatic proteases (31, 34, 54). This effect 

appears to be mediated by an endogenous 
protease-sensitive CCK-releasing peptide in the 
intestinal lumen (30, 50, 85). In addition to 
proteases, bile acids in the intestine affect CCK 
secretion (26, 55). In rats, luminal administration of 
taurocholate inhibited pancreatic enzyme secretion 
as well as CCK (90). In humans, single bile acids 
did not cause a decrease in CCK release, however, 
under conditions in which endogenous release of 
bile acid was inhibited by the CCK1 receptor 
antagonist loxiglumide, addition of a mixture of bile 
acids to a test meal prevented the increase in CCK 
release suggesting that bile acids play an important 
role in downregulating CCK secretion (43). 
 
CCK released from EECs can act locally via a 
paracrine mechanism or enter the enteric blood 
stream and exert effects on distant target organs 
through hormonal mechanisms. There is evidence 
for neural activation of vagal afferents in the 
intestinal mucosa which express CCK1 receptors 
and terminate in the lamina propria (74). Although 
the effect of CCK on the vagus nerve was believed 
to be paracrine or hormonal action, recently, CCK 
cells have been shown to be in direct contact with 
neurons (7, 12, 53) and this connection may 
provide a direct neural link between the gut and 
brain. 
 
Cholecystokinin Receptors 

The action of CCK on tissues is mediated by two G 
protein-coupled receptors, CCK1 and CCK2, 
formerly known as CCK-A (for alimentary) and 
CCK-B (for brain) (17). CCK1 receptors are mainly 
located in the gastrointestinal tract, myenteric 
plexus, and vagal afferents and bind sulfated CCK 
with 1000-fold higher affinity than gastrin or non-
sulfated CCK (16). CCK2 receptors are present in 
the stomach and the brain and have similar affinity 
for sulfated or non-sulfated CCK and for gastrin; 
hence this receptor is also known as the gastrin 
receptor. Development of receptor knockout mice 
have demonstrated that CCK1 receptors are 
important in regulation of CCK-mediated satiety 
responses (44) while CCK2 receptors are primarily 
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involved in maintaining gastric morphology and 
acid secretion (47). A double CCK1/CCK2 
knockout mouse displayed brain development 
abnormalities (67). 
 

2. Actions of CCK 

CCK Induces Gallbladder Contraction 

CCK mediates bile release into the intestine by the 
dual action of stimulating gallbladder contraction 
and relaxing the sphincter of Oddi which allows bile 
to flow into the duodenum. In humans, infusion of 
CCK-8, decreased gallbladder volume by 80% and 
increased bilirubin output by 8 to 10-fold (82). 
These effects are mediated by CCK1 receptors 
that are located on both the smooth muscle layer 
of the gallbladder as well as cholinergic nerve 
terminals (81). The CCK1 receptor antagonist 
loxiglumide blocked bile release and CCK1 
receptor knockout mice showed increased 
gallbladder volumes with enhanced susceptibility 
for gallstone formation compared to wild type mice 
(93). 
 
CCK Stimulates Exocrine Pancreatic 
Secretion  

Along with gallbladder contraction, the effects of 
CCK on pancreatic secretion were demonstrated in 
the first half of the 20th century when this hormone 
was also known as pancreozymin (29). CCK is one 
of the most important stimulants of pancreatic 
secretion (11). Physiological levels of exogenous 
CCK-33 administered to humans induced a trypsin 
output profile similar to that seen after a 
standardized test meal (40). The effect of CCK on 
human pancreatic enzyme output was partially 
blocked by the CCK1 receptor antagonist 
loxiglumide and completely inhibited by atropine 
suggesting that cholinergic activation is the major 
mechanism of CCK action (1, 22). In support of this 
finding, human acinar cells did not respond to CCK 
agonists and were shown to lack CCK1 and CCK2 
receptors even though adenoviral mediated 
expression of CCK receptors on human acinar 

cells resulted in stimulation with CCK agonists (35). 
In contrast to humans, pancreatic secretion in 
rodents is mediated by direct activation of CCK1 
receptors located on acinar cells as well as on 
vagal afferents (49, 83, 92). 
 
CCK Stimulates Pancreatic Ductal 
Secretion 

In addition to stimulation of protein by acinar cells, 
CCK promotes bicarbonate and fluid secretion 
from pancreatic ductal cells. Intraduodenal 
administration of corn oil in dogs led to elevated 
CCK levels along with protein and bicarbonate 
secretion (36). Secretion of bicarbonate and fluid 
was dependent on activation of CCK1 receptors, 
but not CCK2 receptors, and could be mimicked by 
a CCK1 receptor agonist (86). 
 
Trophic effect of CCK on the pancreas  

Several studies have demonstrated that CCK can 
increase pancreatic size (96). Exogenous 
administration of CCK increased pancreatic mass 
in hamsters and rats (27, 28, 68). In the rat, CCK1 
receptor but not CCK2 receptor agonists increased 
pancreatic mass by increasing the number of cells 
comprising the exocrine pancreas (72). Since the 
human pancreas lacks CCK1 receptors, 
administration of ximelagatran, which has protease 
inhibitor activity and stimulates pancreatic growth 
in rats, did not have a significant effect on 
pancreatic growth in humans (56). Despite the lack 
of hypertrophic effects observed in human studies, 
it was recently shown that pancreatic atrophy 
resulting from total parenteral nutrition (TPN) could 
be reversed by CCK in rodents. When sulfated 
CCK-8 was infused in rats on TPN or an oral food 
diet, an increase in pancreatic mass was observed 
compared to non-CCK infused rats. The increase 
in pancreatic mass was somewhat less in rats on 
TPN suggesting that other factors may be involved 
in atrophy of the pancreas during TPN (98). 
 
CCK Delays Gastric Emptying  
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CCK has been shown to have a pronounced effect 
in delaying gastric emptying in fish, rodents, dogs 
and humans (15, 69) by both relaxation of the 
proximal stomach and contraction of the pylorus 
(99). Administration of physiological levels of CCK-
8 delayed gastric emptying in humans (52). In 
addition, this effect was dose-dependent and 
blocked by the CCK1 receptor antagonist 
loxiglumide (42, 52). Both vagal and splanchnic 
nerve pathways mediate the effect of CCK on 
gastric relaxation. In rats, bilateral cervical 
vagotomy partially reduced CCK-8-induced gastric 
relaxation but this response was completely 
eliminated when vagotomy was coupled with 
splanchnic nerve section (75). 

CCK Induces Satiety  

A seminal paper published in 1973 showed that 
administration of exogenous CCK-8 reduced food 
intake in rats (24). Similar effects have been 
noticed in a number of species including humans, 

where CCK-8 or CCK-33 infusion limited meal 
size and frequency (41, 59). CCK mediates 
satiety through its effects on CCK1 receptors 
located on vagal afferent nerves which provide 
negative feedback to the dorsal hind brain limiting 
food intake. The CCK1 receptor antagonist 
devazepide reduced the effects of CCK on satiety 
(4, 73) and increased hunger in humans (97). 
Moreover, Otsuka Long Evans Tokushima Fatty 
(OLETF) rats which lack CCK1 receptors (due to 
a spontaneous deletion of the promoter and 
exons 1 and 2 of the CCK1 receptor gene) were 
insensitive to reduction of feeding after 
administration of exogenous CCK (66). However, 
a CCK1 receptor specific agonist, GI191771X, 
which delayed gastric emptying, did not cause 
reduction in body weight of obese patients (BMI 
≥30 or ≥27 kg/m2) in a 24‐week double‐blind trial, 
suggesting that regulation of this pathway by CCK 
was insufficient for controlling obesity (9, 39).  

 

 
Figure 5.  Physiological targets for CCK action. 
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In summary, CCK plays an important role in the 
regulation of postprandial gallbladder contraction, 
pancreatic secretion (enzyme, bicarbonate and 
fluid), as well as gastric emptying which optimizes 
the lumenal environment (pH) and regulates 
digestion of food in the gastrointestinal tract 
(Figure 5).  
 

3. Tools for study of CCK  

a. Peptide:  
CCK-8 (DYMGWMDF-NH2) peptide retains full 
biological activity and is available in powder form 
from several vendors (Anaspec, Sigma Chemical 
Company, Tocris). Biologically active CCK-8 is 
sulfated on its tyrosine residue. De-sulfated CCK-
8 peptide is often used as a control. Longer forms 
of CCK can be purchased as recombinant proteins. 
 

b. Antibodies:  
Antibodies that detect CCK on western blots or in 
tissues are available from numerous sources 
(Abcam Cat# ab134713, Sigma Chemical 
Company Cat# C2581, LSBio Cat# LS-C293314). 
In our lab we generated a rabbit polyclonal to 
amino acids 19-36 of human CCK and affinity 
purified the antiserum over a peptide column (10). 
It should be noted that antibodies generated 
against CCK-8 peptide may also detect gastrin due 
to sequence identity of the last four amino acids.  
 

c. cDNAs:  
Human and rodent codon-optimized CCK cDNAs 
for expression in E. coli and mammalian cells are 
commercially available. Myc-tagged CCK cDNAs 
are also available. 
 

d. Viral vectors:  
Lentiviral particles of CCK tagged with myc or 
EGFP are available.  Adenoviruses containing 

either the human or rodent CCK gene can also be 
purchased. 
 

e. Assay:  
ELISA kits with sensitivity in the range of 10 -1000 
pg/mL are available from several vendors to 
measure CCK concentration. Kits from the 
following manufacturers are cited in literature: 
RayBiotech (100), Cloud-Clone Corp. (46), 
Phoenix Pharmaceuticals (20, 89). In addition, 
radioimmunoassays (RIA) are also used to 
quantitate CCK (60, 64, 91). In our laboratory we 
routinely use a CCK bioassay to measure CCK 
concentrations in human or rodent plasma 
samples (51, 58, 79). For the CCK bioassay, trunk 
blood is collected from three mice (1 ml total 
serum) per data point.  
  

f. Mouse models:  
CCK knockout mice (expressing lacZ reporter in 
cells where CCK is knocked out) and transgenic 
mice expressing EGFP in CCK cells are available 
from Jackson Labs and Mutant Mouse Resource 
and Research Centers (MMRRC) respectively. 
These mice have been characterized in various 
publications in the literature (10, 63).  
 

g. Clinical Testing: 
CCK-8 intravenous bolus injections (Sincalide 0.02 
mcg/kg) are given to patients to perform clinical 
assessments: 1) Measurement of gallbladder 
contractility prior to cholecystectomy 
(https://clinicaltrials.gov/ct2/show/record/NCT0274
8525); 2) Evaluation of the composition of 
pancreatic secretion; and 3) Diagnosis of intestinal 
disorders by barium sulfate imaging; administration 
of CCK-8 accelerates the transit of barium through 
the GI tract. (https://www.rxlist.com/kinevac-
drug.htm#description). 

  
 

 

https://clinicaltrials.gov/ct2/show/record/NCT02748525
https://clinicaltrials.gov/ct2/show/record/NCT02748525
https://www.rxlist.com/kinevac-drug.htm%23description
https://www.rxlist.com/kinevac-drug.htm%23description
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