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1. Overview (General) 

α-Amylase (1,4-α-D-glucan-glucanohydrolase, EC 
3.2.1.1) is the primary digestive enzyme acting on 
starch or glycogen and is present in plants, 
animals, bacteria and fungi.  Starch from plants is 
a high molecular weight polymer of glucose.  It is 
made up of amylose, a straight-chain α-1,4 linked 
polymer of about 105units and amylopectin, a 
branched chain polymer with α1,4 linked glucose 
with branch points made up of α-1,6 linkages that 
contains about 106 units of glucose.  Glycogen 
from animals is similar to amylopectin in structure 
but is smaller.  α-Amylase cleaves the α-1,4 
linkage when it is not next to a branch point or 
terminal glucose residue.  Thus its products are 
maltose (2 glucose residues), maltotriose (3 
glucose residues) and α-limit dextrins (5-6 
residues which contain a branch point).  In 
vertebrates, these are further cleaved to 
monosaccharides by the intestinal brush border 
enzymes isomaltase and maltase which hydrolyze 
the α-1,6 and α-1,4 bonds respectively (3).  
Studies show that hydrolysis and not 
monosaccharide absorption is the rate limiting 
step in complex carbohydrate absorption in 
humans (20). 
 
In animals α-amylase occurs in pancreas, parotid, 
serum, urine and occasionally in smaller amounts 

in other tissues or tumors; the major salivary and 
pancreatic amylase proteins are very similar (47).  
Salivary amylase initiates carbohydrate digestion 
in the mouth and pancreatic amylase is the main 
enzyme for luminal digestion of carbohydrate in 
the small intestine.  Human pancreatic α-amylase 
is a protein of 57 KDa for which the cDNA predicts 
a protein of 512 amino acids (54). This includes a 
signal sequence; amylase isolated from human 
pancreatic juice has 496 amino acids (15).   In 
various species the reported molecular weight for 
amylase is 50-57 kDa and consists of a single 
chain protein with one carbohydrate (some 
species have an isoform with none)  and an 
isoelectric point of 7.1. (39).  Human pancreatic 
juice amylase has no sugar groups and exists as 
two isoforms of pI 7.2 and 6.6 termed HPA I and 
HPA II (15).  Five disulfide bridges have been 
described in porcine pancreatic amylase (35) and 
most species have one or two free sulphydryl 
groups.  Salivary amylase is coded for by the 
AMY1 gene and pancreatic amylase by AMY2; a 
third form present in some tumors is termed 
AMY2B (33, 56, 57).  Amylase is a multigene 
family with multiple genes and pseudogenes on 
chromosome 1 in humans and chromosome 3 in 
mice (19, 48).  Interestingly, individuals from 
agricultural societies that consume high starch 
diets have a higher copy number of salivary 
amylase genes (37) and a high copy number 
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leads to more protein and increased perception of 
oral starch (26, 42). 
 
The amylase protein contains three domains 
termed A, B, and C starting at the amino terminal 
with C being a globular domain of unknown 
function.  The active site is located in a cleft 
between the A and B domains (7).  Calcium and 
chloride ions bind to the A domain and may 
stabilize the active site.  The active center 
contains 5 subsites which bind different glucose 
residues in the substrate (43).  Kinetic evidence 
supports two additional carbohydrate binding sites 
(2).  The rate of starch digestion also depends on 
the structure of the starch which can be affected 
by storage or cooking (13).   Studies of the 
enzymatic mechanism have also benefited from 
the existence of a large family of plant α-amylase 
inhibitory proteins (5, 49).  The best studied of 
these are from beans and the structure of the 
enzyme-inhibitor complex has been determined 
(41).  More potent inhibitors have been derived 
from pseudooligosaccarides of which one, the 
pseudotetrasacharide, acarbose has been 
approved for clinical use.  The crystal structure of 
pig amylase complexed with acarbose has been 
reported (16).  These pseudooligosaccaride 
inhibitors, in contrast to the proteinaceous 
inhibitors, block all glucosidases including 
intestinal brush border enzymes as well as 
amylase (44). 
 
Multiple pancreatic enzymes including amylase 
are found absorbed to the surface of the duodenal 
mucosa although they could be washed off with 
high salt (3).  Amylase, however, was shown to 
specifically bind to N-linked oligosaccharides of 
brush border glycoproteins and that binding 
enhanced amylase activity (27).  Specific 
glycoproteins binding amylase have been 
identified as sucrase-isomaltase (SI) and SGLT1 
(4).  This binding enhanced the activity of SI as 
well as that of amylase but inhibited the activity of 
SGLT1.  The authors proposed that this enhances 

digestion but prevents too rapid absorption of 
glucose.  After binding to brush border proteins 
amylase is internalized into enterocytes restoring 
glucose uptake (12). 
 
2. Pancreatic Function 

Amylase Localization, Regulation and 
Deficiency 
Pancreatic amylase is similar to other secretory 
proteins and is synthesized in the rough 
endoplasmic reticulum. It then moves through the 
Golgi apparatus and is stored in secretory 
granules until the time it undergoes regulated 
secretion.  Immunostaining reveals its 
concentration in the granules (Figure 1).  As with 
other pancreatic enzymes, the amount of amylase 
in the pancreas is regulated by the amount of 
dietary substrate (6, 17, 46).  Rodents which eat a 
carbohydrate rich diet synthesize more amylase 
which is the most abundant pancreatic digestive 
enzyme in these species.  This effect occurs at 
the transcriptional level and the effect is mediated 
in large part by insulin.  With diabetes the 
pancreatic amylase falls, but can recover 
following insulin treatment (24, 51).  This is 
especially prominent in rats where in experimental 
diabetes pancreatic amylase falls to only a few 
percent of normal. A 30 base pair insulin 
responsive element was identified in the mouse 
Amy2-2 gene (22).  The fact that mice express 
more than one functional Amy2 gene explains 
why total pancreatic amylase does not fall in 
diabetes as much as it does in rats. 
 
 Healthy volunteers are able to absorb nearly 
100% of a starch load.  However, in chronic 
pancreatitis with loss of functioning pancreatic 
tissue, only about 90% is digested and absorbed;  
with complete inhibition of amylase this is reduced 
to 80-85% (25).  In the latter case up to 20% of 
carbohydrate reaches the ileum and the rise of 
plasma GIP and C peptide from proinsulin is 
blocked.  Patients with isolated amylase 
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deficiency have been reported with carbohydrate 
malabsorption and its resulting symptoms (30, 
45).  The patients evaluated have intact mRNA 
but no amylase protein.  This is similar to 
physiological pancreatic amylase deficiency at 
birth where lack of symptoms is in part due to low 
dietary starch requiring amylase and in part the 
action of salivary amylase.  Amylase deficiency 
may be underreported due to mild symptoms. 
 

 
Figure 1. Immunoflourescent localization of amylase in 
mouse pancreas (green). Nuclei are stained blue with DAPI 
 
Serum Amylase as a Measure of 
Pancreatic Function in Pancreatitis 
Determination of serum amylase has long been a 
mainstay in the diagnosis of acute pancreatitis.  
Serum amylase in normal individuals is about half 
salivary and half pancreatic form and each exists 
in several isoforms all of which contribute to total 
amylase.  Because of the existence of different 
assays and standards, the cutoff for acute 
pancreatitis is usually expressed related to the 
range of normal for the particular clinical 
laboratory.  Levels greater than three times the 
upper limit of normal (ULN) are usually taken as 
indicative of pancreatitis.  However, the diagnostic 
specificity is only 70-90% depending on the 

population studied and the gold standard used 
(10, 52).  A higher specificity is obtained when a 
higher cutoff point is used such as 5 or even 9 
times the ULN, but at the cost of lower sensitivity.  
Utilizing assays to inhibit salivary amylase with 
wheat germ inhibitor or monoclonal antibodies 
(50) or removing it with immobilized monoclonal 
antibody (32) increase specificity somewhat and 
helps eliminate a contribution from tumors or other 
organs which primarily produce salivary amylase, 
but these tests are not always available.  The 
combination of serum lipase with amylase is 
generally available and helps when serum 
amylase levels have already peaked and 
declined.  A rise in serum amylase can also be 
due to macroamylassemia where amylase is 
bound to plasma protein (usually IgA or IgM) but 
this only occurs in only 1-3 % of normal humans.  
Amylase is also elevated in a variety of surgical, 
traumatic and neoplastic diseases (10, 38, 52).  
Renal disease can reduce amylase filtration and 
enhance plasma levels, but this increase is 
usually small as glomerular filtration is only a 
small portion of amylase clearance (38).  A 
chronic increase in multiple serum pancreatic 
enzymes including amylase in otherwise healthy 
subjects without pancreatic disease was 
described by Gullo in 1996 and is now termed 
benign pancreatic hyperenzymemia or Gullo’s 
syndrome (18).  Advanced imaging techniques 
may uncover a pancreatic abnormality in some of 
these patients. 
 
It is also important to be aware that pancreatitis 
can occur without increased serum amylase 
especially with alcoholic pancreatitis or recurrent 
chronic pancreatitis (34).  In some of these cases, 
lipase is elevated.  Thus, while amylase is still one 
of the most useful tests in diagnosing acute 
pancreatitis, it should be carried out in conjunction 
with other tests (1) along with an understanding of 
amylase metabolism. 
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Amylase secretion as a measure of 
regulated pancreatic or parotid secretion 
Measurement of amylase secretion has become 
widely adopted to measure regulated protein 
secretion by pancreas or parotid fragments, slices 
or isolated acini.  Amylase has filled this role 
because it is easy to measure, sensitive, and 
does not require activation as do proteases.  
While for measurement of serum amylase in 
pancreatitis an absolute amount is desirable, most 
secretory measurements involve separately 
assaying the secretory product, usually in the 
incubation medium, and the tissue content and 
calculating the percent content released in a 
specified time.  While earliest measurements 
assayed the reducing groups produced in the 
hydrolytic product, most often with dinitrosalicylic 
acid, studies over the last 50 years have more 
commonly used the solubilized products of 
substrate or a colored or flourescent enzymatic 
product produced in a coupled reaction.  
Examples of this approach are Remazolbrilliant 
blue starch (40), Procion Yellow labeled starch 
(20), amylopectin anthranilate (35), and 
Cibachronblue F3GA-amylose (23). A common 
commercially available substrate is the Phadebas 
reagent in which an unspecified blue dye is linked 
to starch (9).   Most commonly these secretion 
studies are endpoint assays where tissue is 
incubated for a standard time and then aliquots of 
the medium are incubated with the starch 
substrate for a set time, centrifuged, and the 
product read in a spectrophotometer or 
flourometer (31, 55).  Some of these assays have 
been adapted to continuous readout with a flow 
through system (11, 28). A second approach uses 
soluble colorless substrates that can be incubated 
in a plate reader with samples of the medium and 
lead to a colored or fluorescent product either 
directly or through a coupled reaction.  One 
primary substrate is ethylidene-paranitrophenol-
G7.  This can be read directly or the glucose 
released determined by glucose oxidase (53).  
This type of assay has also been adapted to 

autoanalyzer technique.  Recently both types of 
assays have been used to determine human 
duodenal amylase with high correlation (14). 
 
Amylase Inhibitors in Clinical Medicine 
Amylase inhibitors particularly Acarbose, a 
pseudotetrasacharide, have been used it the 
treatment of type 2 diabetes where they have 
moderate effects to reduce peak postprandial 
glucose and Hemoglobin A1c.  Normally, they are 
used as a second line medication often in 
conjunction with metformin (29).  Evidence also 
exists that Acarbose can reduce dumping 
syndrome after bariatric surgery (8).   A host of 
natural plant products with amylase inhibitor 
activities have been proposed or studied as a 
treatment for diabetes but little conclusive 
evidence exists for their effectiveness. 
 
3. Tools for the study of Amylase 

a. Antibodies 
Amylase antibodies are widely available but not 
always well tested.  The most commonly used is 
from Sigma-Aldrich (cat # A8273) and is raised in 
rabbits injected with purified human salivary 
amylase.  It is highly specific, reacts with both 
salivary and pancreatic amylase and in our hands 
works well for Western Blotting, 
immunofluorescence (Fig. 1) and 
immunohistochemistry in rodent tissue as well as 
human tissue.  A number of companies sell anti-
amylase antibodies raised in sheep, rat or mice 
(monoclonal) that would allow double labeling with 
other rabbit antibodies. 
 
b. Assay kits and reagents 
The most used amylase substrate for assays in 
research laboratories is the Phadebas reagent 
which is starch coupled to a blue dye.  It was 
developed by Pharmacia Diagnostics and is now 
made by Magle Life Sciences and sold by Fisher 
Scientific.  It can be used to measure amylase in 
plasma or serum as well as that secreted by 
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pancreatic and parotid cells where it can be 
diluted to reduce cost.  Alternative amylase assay 
kits are EnzChek Ultra Amylase Assay sold by 
ThermoFisher which uses bodipy labeled starch 

as substrate and Amylase Assay Kit from Sigma-
Aldrich that uses ethylidine-paranitrophenol-G7 as 
substrate. 
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