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1. General Information 

 

1.1 Size and Evolution  

The ryanodine receptor (RyR) is a selective Ca2+ 

release channel that is localized to the 

endoplasmic reticulum (ER) in both excitable and 

non-excitable cells. The RyR owes its name to the 

plant alkaloid and high affinity ligand ryanodine. 

The functional RyR exists as a tetramer 

composed of a single unit of approximately 

565kDa. To date, it is the largest known ion 

channel. In mammals, there are three RyR 

isoforms that share approximately 70% homology 

and several biophysical properties (26). RyR1 is 

the dominant Ca2+ release channel present on 

sarcoplasmic reticulum (SR) in skeletal muscles 

(104, 127), RyR2 is predominant in cardiac 

muscle (73), and in brain there is more general 

expression of all three isoforms (29, 36, 67, 73, 

126).  

Based on phylogenetic analysis, it is likely that all 

three RyR isoforms evolved from a single 

ancestor. In addition, there is evidence to suggest 

that the RyR as well as another intracellular Ca2+ 

channel the inositol 1,4,5-trisphosphate receptor 

(IP3R) evolved from a common ancestral gene 

(107). Sequence analysis reveals a high degree 

of similarity in the channel pore region (107), 

supporting the common ancestor theory. This 

structural homology is also present between the 

pore-forming region of RyRs and other ion 

channels, which include voltage gated ion 

channels, cyclic nucleotide gated channels, and 

the transient receptor potential channels (TRP) 

(41). Phylogenetic studies also reveal that certain 

RyR domains are highly conserved from worms to 

humans. For instance, there is 35-40% homology 

at the amino acid level between C. elegans and 

vertebrates, and the functional domains including 

the leucine/isoleucine zipper, the pore region, and 

the transmembrane domains are highly conserved 

in all three RyR isoforms. Mutations in these 

domains alter channel functions such as caffeine-

induced Ca2+ release, ryanodine binding, single 

channel conductance, and cation selectivity (31, 

122).  
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1.2 The RyR genes 

The organization of the phylogenetic tree supports 

the model than an expansion of the vertebrate 

gene family was associated with an initial 

duplication of the RyR1 gene, since only one RyR 

gene is found in invertebrates. Non-mammalian 

vertebrates express two RyR genes (80). Further, 

it appears that a second duplication occurred in 

mammals, which distinguishes them from other 

vertebrates. In mammals, three RyR isoforms are 

transcribed from three separate genes. In humans 

the gene for RYR1 is located on chromosome 

19q13.2 and spans 104 exons. The RYR2 gene is 

located on chromosome 1q43 and spans 102 

exons, and the RYR3 gene is located on 

chromosome 15q13.3-14 and spans 103 exons. 

An additional means of generating diversity in 

RyR channels is through alternative splicing (30, 

73, 106, 107, 114). Although there are reports that 

splice variants, for example, of RyR3 exhibit 

reduced caffeine sensitivity (49), relatively little is 

known about the functional properties of 

alternatively spliced RyR channels.  

 

1.3 Three-dimensional structure and 

ligand binding 

Three-dimensional (3D) structural information is 

essential to an understanding of the functional 

properties of RyRs. While there are no published 

full length crystal structures of the RyR, there are 

several crystal structures of the N-terminal 

domain, and they reveal structural similarities with 

the IP3R (62, 92). Cryo-electron microscopy (EM) 

generated 3D reconstructions of RyR reveal a 

highly conserved structure, having the overall 

shape of a mushroom and consisting of two major 

components: a large, square prism-shaped 

cytoplasmic assembly composed of at least 10 

distinct domains, and a differentiated small 

transmembrane assembly (Figure 1). Sequence 

analysis (104, 106) and biochemical studies (20, 

37) demonstrate that the N-terminus (~4000-4500 

amino acid residues) contains the large 

cytoplasmic assembly, while the C-terminus 

(~500-1000 amino acid residues) comprises the 

transmembrane regions (Figure 2). The precise 

number of transmembrane segments per single 

monomer unit is controversial; four-, six-, and ten-

segment models have been proposed (20). 

However, a developing consensus supports that 

six transmembrane segments exist per monomer, 

in a fashion similar to that of IP3R (88). 

RyRs are regulated by numerous natural ligands. 

Most of these ligands modulate specific sites on 

the large cytoplasmic portion of the channel. 

Ligands that activate RyR opening include 

cytosolic Ca2+, which is the most potent activator, 

calmodulin (during low Ca2+ concentrations) (110), 

cyclic ADP ribose (cADPR; primarily an activator 

of RyR2) (58, 71), ATP (91), and the 

dihydropyridine receptor (DHPR; for RyR1) (11). 

Ligand interactions that inhibit the RyR include 

magnesium (68), FK506 binding protein 12 

(FKBP12; for RyR1), and FKBP12.6 (for RyR2) 

(48). The role of NAADP as a direct allosteric 

activator of the RyR (versus a two pore channel or 

a transient receptor potential channel) is still a 

matter of controversy (13, 28, 56). A list of RyR 

activators and inhibitors is provided in Table 1.  

In addition, protein-protein interactions via three 

leucine/isoleucine zipper motifs on the RyR2 allow 

binding of the adaptor proteins spinophilin, 

PR130, mAKAP, protein phosphatases PP1 and 

PP2A, and protein kinase A (PKA) to the channel 

complex (Figure 3) (66).  

 

1.4 Post-translational modifications 

In addition to regulation by ligand binding, RyR 

opening is controlled by post-translational 

modifications that include covalent 

phosphorylation, nitrosylation, and redox potential 

(oxidation/reduction of cysteine sulfhydryl 

moieties). Three major phosphorylation sites exist 

on the RyR and physiologically regulate RyR 

conductance. They include serine (S)2814, 

S2030, and S2808. S2814 and S2030 are 

phosphorylated by CaMKII and PKA, respectively. 

It is not yet resolved which of the kinases-- 

CaMKII, PKA, or PKG-- phosphorylates S2808 on 

RyR2. 

Increasing evidence supports the redox 

modulation of RyR channels (44, 84, 112). A 
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small number of hyper-reactive sulfhydryls on 

RyR are susceptible to oxidation (40), S-

nitrosylation (5, 22), and S-glutathionylation (3) by 

a number of endogenous redox-active agents. 

Typically, exposure of RyR to these agents 

increases its sensitivity towards activators or 

decreases its sensitivity towards inhibitors (3, 75).  

 

 
Figure 1. Three-dimensional reconstruction of the 
RyR1 from skeletal muscle by cryo-electron 
microscopy. Ryanodine receptors were purified from 
skeletal muscle membrane fractions and cryo-electron 
microscopy (EM) was performed as previously 
described (1). (A) “Bottom” view of the surface facing 
the ER lumen. (B) “Top” view of the cytoplasmic 
surface. Single arrow represents a cluster of domains 
that form the cytoplasmic  assembly, termed “clamps.” 
Double arrows represent the largest cytoplasmic 
assembly domains, which connect the “clamps”, 
termed “handles.” (C) “Side” view of the 
transmembrane assembly. Reprinted with permission 
from Macmillan Publishers Ltd: Nature Structural 
Biololgy, (93). 

 

 

1.5 The RyR pore 

The RyR pore is the region which provides a 

pathway for ions to cross the dielectric barrier of 

the ER membrane and shares much of its 

architecture with K+ channels. The putative 

membrane-spanning regions, which make up the 

RyR pore, have been identified within the last 

1000 residues of the C-terminus (20, 104, 127). 

The ion handling properties of the RyR pore have 

also been examined in detailed (111). Although 

the RyR effectively excludes anions, it does not 

discriminate between cations as well. RyR 

channels are permeable to a wide range of 

divalent and monovalent inorganic cations and 

some organic monovalent cations. The rate of 

cation translocation through the RyR pore is 

higher than those of other ion channels (111). 

Because the RyR behaves as a single ion 

channel, the most likely explanation is that the 

RyR pore contains a short, wide, selectivity filter.  

 

1.6 Ca2+-induced Ca2+ release 

In skeletal muscle, physical coupling of RyR1 with 

the DHPR causes RyR opening. However, in 

cardiac, smooth muscle, and non-excitable cells, 

RyR Ca2+ release is due to exposure of the RyR 

to cytosolic Ca2+. This phenomenon is known as 

Ca2+-induced Ca2+ release (CICR). The RyR is, in 

fact, a prototypic CICR channel. This triggering 

Ca2+ signal can arise from several different 

sources, including extracellular Ca2+ influx through 

the plasma membrane or intracellular Ca2+ 

released from neighboring IP3Rs. Regardless of 

the source, the effectiveness of the Ca2+ signal is 

dependent on both its speed and amplitude. Work 

by Fabiato and colleagues demonstrated that SR 

Ca2+ release is directly proportional to the 

amplitude and duration of the initial Ca2+ trigger. 

CICR subsequently undergoes feedback inhibition 

through binding of Ca2+ to low affinity Ca2+ binding 

sites on the RyR that are inactivating (8, 23).  

 

1.7 RyR-associated pathologies 

Over 300 RyR mutations have been associated 

with disorders (54), including the RyR myopathies 

malignant hyperthermia (69, 72), central core 

disease (63), multiminicore disease (25), atypical 

periodic paralyses (125), catecholaminergic 

polymorphic ventricular tachycardia, and 

arrhythmogenic right ventricular dysplasia type 2 

(64, 87, 120). The RyR has also been indirectly 

linked to acquired pathologies such as heart 

failure (95) and over-exercise muscle fatigue (4).  

The following references provide a more 

comprehensive review of RyR structure and 

function (26, 39, 54, 90, 118, 126). 
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Figure 2. Structural domains and accessory proteins of the RyR2. The primary structure of the RyR and 
binding domains of protein phosphatases 1 and 2A (PP1, PP2A), protein kinase A (PKA), calmodulin, and 
FKBP12.6 are shown. PP1 and PP2A and PKA bind to the RyR via their specific adaptor proteins. Six 
transmembrane segments are shown as previously described (20). CaM, calmodulin; DR, divergent region; 
FKBP, calstabin-2; LIZ, leucine–isoleucine zipper; SR, sarcoplasmic reticulum. Reprinted with permission from 
Macmillan Publishers Ltd: Nature Clinical Practice Cardiovascular Medicine, (116).

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Diagram of the yR2 macromolecular complex with accessory proteins. The RyR2 macromolecular 
complex includes four identical RyR2 subunits (numerals 1-4). Each RyR2 subunit binds one calstabin2 (also 
known as FKBP12.6) as well as mAKAP, to which PKA catalytic and regulatory subunits and PDE4D3 are bound; 
PP2A and its targeting protein PR130; and PP1 and its targeting protein spinophilin (accessory molecules are 
only shown for one of the four RyR2 subunits, except calstabin2, which is shown for all four RyR2 subunits). The 
β-adrenergic signaling pathway can activate PKA through the second messenger cAMP. Reprinted with 
permission from the American Society for Clinical Investigation: Journal of Clinical Investigation, (65).
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2. Pancreatic Information 

 

2.1 RyR expression in the pancreas 

Several groups have examined RyR isoforms in 

both acinar cells and islets. Muallem and 

colleagues failed to see expression of RyRs in rat 

pancreatic acini by immunofluorescence (IF) (57).  

Later, however, Nathanson and colleagues 

demonstrated expression of RyR2 by PCR and 

western blotting (59). By IF, they saw a non-apical 

pattern of labeling. A similar distribution of the 

RyR signal was observed by several labs 

including those of Yule (using BODIPY-ryanodine) 

(100) and Pandol (27). The latter found that all 

three isoforms were expressed. Our lab has 

further confirmed the presence of RyR in rat 

(Figure 4) (46, 94), mouse (Figure 5) (78), and in 

human acinar cells (unpublished).   

The presence of RyR in pancreatic islets has 

been a subject of recent interest. Investigators 

first considered the possibility that β-cells possess 

RyR channels after discovering that IP3 caused 

release of only ~50% of the ER Ca2+ pool (98). 

Intracellular Ca2+ release is critical for physiologic 

regulation of insulin secretion by glucose and 

incretin hormones in pancreatic β-cells (47). 

Therefore, it was hypothesized that the β-cell ER 

may be equipped with RyR channels to help 

regulate this process. Initial studies utilized the 

RyR activator thimerosal to show intracellular 

release of Ca2+ from the IP3-insensitive pool (41, 

122). The release was potentiated by caffeine, 

suggesting that RyRs are present. Subsequent 

studies demonstrated that low dose ryanodine-

induced Ca2+ release from islet microsomes (31) 

and caffeine-induced Ca2+ release from the ER of 

intact β-cells (80). Work by Johnson et. al. first 

demonstrated the predominance of RyR2 in 

mouse islets (6, 47, 50). These studies were 

recently complemented with the interesting finding 

that a novel RyR2 splice variant exists in mouse 

pancreatic islets (107). The protein product is 

present in both mouse and human islets and 

remains fully functional. Lastly, Wehrens and 

colleagues confirmed the original findings that 

RyR2 is the predominant isoform, with the 

addition that RyR3 is also expressed at low levels 

(6).  

 
Figure 4. In mouse pancreatic acinar cells the 
ryanodine receptor (RYR) is localized to the 
basolateral region, and RYR1 is expressed. (A) Left: 
RYR is distributed in the basolateral region (Ba) of the 
acinar cell but excluded from the apical region (Ap). 
Right: control section without primary antibody but 
same laser confocal microscopy setting as at left. (B) 
PCR for RYR isoforms from brain tissue (positive 
control) and acinar cells. Reprinted with permission 
from the American Physiological Society: American 
Journal of Physiology: Gastrointestinal and Liver 
Physiology, (78). 

 

2.2 RyR Ca2+ release in the acinar cell 

RyR Ca2+ release in pancreatic acinar cells was 

first implicated with the use of caffeine (109). In 

these early studies, Petersen and colleagues 

described the globalization of acinar cell Ca2+ 

signals in the presence of 1 mM caffeine. These 

results suggested the presence of a RyR 

releasable Ca2+ pool that is triggered by IP3R-

Ca2+ release. Later, Thorn et. al. described a 

primary role for the RyR in the generation of Ca2+ 

spikes (105). Even though RyRs appear to be 

concentrated in the non-apical region of acinar 

cells (as mentioned earlier), there is some 

controversy, over whether they can shape apical 
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Ca2+ signals or whether they primarily influence 

apical to basal Ca2+ waves. Evidence for both 

sides will be briefly presented below.  

Thorn et. al. demonstrated that intracellular 

injection of the putative RyR ligand cADPR via a 

patch pipette induced apical Ca2+ spikes (105). 

This and other works suggested the presence of 

RyRs within acidic, non-ER, Ca2+ pools along the 

apical pole (35, 86). Leite et. al., however, 

showed that local uncaging of cADPR in the 

apical region failed to induce a Ca2+ transient, as 

opposed to uncaging into the basal region (58). 

RyRs have been implicated as crucial factors in 

the generation of agonist-induced apical to basal 

Ca2+ waves. Ryanodine at micromolar 

concentrations that inhibit CICR markedly 

reduced the speed of the Ca2+ wave (74, 100). In 

summary, RyRs are concentrated in the non-

apical region, and they amplify Ca2+ signals that 

are initiated by apical IP3Rs.  

 

2.3 The RyR in pancreas pathology 

Whereas physiologic stimuli provoke low 

amplitude, oscillatory Ca2+ signals in acinar cells, 

pathologic insults (which cause pancreatic injury 

and pancreatitis in vivo) induce high amplitude, 

non-oscillatory Ca2+ signals. These latter aberrant 

Ca2+ signals are associated with acinar pathology 

such as intra-acinar protease activation (53, 89), 

vacuole formation (97), mitochondrial 

depolarization (89), and acinar cell leakage (45).  

Husain et. al. reported that RyRs modulate CCK- 

and carbachol-induced protease activation (46). 

Dantrolene, the RyR inhibitor used in this study, 

appeared to selectively reduce basal Ca2+ signals. 

Notably, neither dantrolene nor micromolar 

ryanodine (the latter from a previous study (74)) 

affected enzyme secretion. The findings implicate 

the RyR as a potential therapeutic for pancreatitis 

without the side-effect of perturbing pancreatic 

function (46, 78).  

Ethanol, a major etiology of pancreatitis, given at 

concentrations that are achievable during 

intoxication (100 mM) accelerated the apical to 

basal Ca2+ wave generated by carbachol (79). 

Ethanol also enhanced intra-acinar protease 

activation and acinar cell injury. These changes 

were dependent on the RyR (Figure 6). Another 

study confirmed that RyR inhibition (using 

ruthenium red) modulated pathological Ca2+ 

release and protease activation due to ethanol 

exposure in permeabilized acinar cells (33). 

Although the mechanism by which ethanol 

sensitizes RyRs is still unclear, a potential target 

is post-translational modifications by PKA 

phosphorylation (94). 

Ethanol is readily converted by the pancreas to its 

non-oxidative metabolites in the presence of fatty 

acids to fatty acid ethyl esters (55). Whereas the 

oxidative metabolites induce mild Ca2+ signals, 

several of the non-oxidative metabolites including  

palmitoleic acid ethyl ester (POAEE) and ethyl 

palmitate both induce strong Ca2+ signals and 

convert oscillatory signals with physiological 

stimuli to that of a pathologic peak-plateau pattern 

(16, 17, 19). The Ca2+ signals with POAEE were 

partially dependent on the RyR (34). Bile acid 

exposure of acinar cells may constitute an 

important mechanism of biliary pancreatitis (82, 

83). The bile acid taurolithocholic acid 3-sulfate 

(TLCS) induces robust peak-plateau Ca2+ signals 

(32, 108) and acinar cell injury that are dependent 

upon the RyR (45). Further, in vivo pancreatitis 

due to infusion of bile acids (TLCS or taurocholic 

acid; TC) can be prevented and, importantly, 

treated with the RyR inhibitor dantrolene (45).  

These data do not negate the potential 

involvement of IP3Rs that are concentrated in the 

apical region but also sparsely distributed along 

the ER in the basal region of the acinar cell. 

Overall, however, the findings provide potential for 

the use of RyR modulators as an adjunctive 

therapy for pancreatitis.  

Recent studies have also examined the 

importance of the RyR in pancreatic islets. It has 

previously been established that the RyR serves 

an important function in regulating Ca2+ handling, 

insulin secretion, and glucose tolerance in 

pancreatic islets (6, 50).  
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Figure 5. The distribution of Trypsin Activation Peptide (TAP) overlaps with RYR but not with IP3R. 
Confocal microscopy images of pancreas sections after 30 min of normal saline (A–C) or caerulein 
hyperstimulation (D–F) in vivo were labeled for IP3R-III (A and D), RYR (B and E), or TAP (C and F); nuclei were 
stained blue with TOPRO-3. Basal-to-apical line scans (see arrows in D–F) show that IP3R labeling is apical; 
RYR is distributed in the basolateral region, concentrated in the supranuclear region but excluded from the apical 
region. TAP appears as discrete supranuclear structures (arrowhead). (G) Overlap between TAP and RYR, but 
not IP3R, in the supranuclear region is quantified in five line scans from each section, relative to the distance from 
the basolateral membrane with the nucleus as a reference point. Reprinted with permission from the United 
States National Academy of Sciences: Proceedings of the National Academy of Sciences, (46). 
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Figure 6. Ethanol accelerates the physiologic carbachol-stimulated Ca

2+
 wave. (A) Acinar cells were treated 

with or without ethanol (100 mM) for 30min prior to carbachol (1 uM) stimulation. From left to right, bright field 
view of an acinus labeled at the apical (A) and basolateral (B) regions of interest from an acinar cell. Cells were 
loaded with the Ca

2+
 indicator fluo-4 (5 uM). Upon stimulation with physiologic carbachol (1 uM), subsequent 

images show the initiation of the Ca
2+

 signal in the apical region followed by propagation to the basal region. (B) 
Each paneled image (1– 4), corresponds to a frame along a representative tracing of change in fluorescence over 
time for each region of interest. Left and right arrows show time of first Ca

2+
 rise in the apical and basal regions, 

respectively. Est. [Ca
2+

]i, estimated [Ca
2+

]i; min, minimum; max, maximum. (C-D) Cells were pretreated with 
ethanol (100 mM) for 30 min. (E) Quantitation of difference in Ca

2+
 wave speed with carbachol + ethanol in the 

presence or absence of dantrolene (Dant, 100 uM). (n =13 cells in each). *, p<0.005. (F) Proposed mechanism by 
which ethanol evokes pathological effects on the pancreatic acinar cell. Reprinted with permission from the 
American Society for Biochemistry and Molecular Biology: Journal of Biological Chemistry, (79). 
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3. Tools for Study 

 

3.1 Antibodies 

A list of RyR antibodies and their applications are 

provided in Table 2. 

 

3.2 Expression vectors 

RyR1 and RyR2 have been overexpressed in 

HEK293 cells by Chen and colleagues (49). 

These constructs have proven useful for 

examining the role of various mutations on RyR 

Ca2+ release.  

 

3.3 Animal models 

The RyR1 (102) and RyR2 (103) knockout mice 

do not survive beyond neonatal life, while RyR3 

deficient mice live to adulthood (7). Currently, 

there are no floxed conditional knockouts. There 

is, however, a knockout of CD38, the enzyme that 

synthesizes the putative RyR activator cADPR 

(77, 117). There are also knockins of the 

phosphomimetic and phosphoresistant mutations 

at S2808 and S2814 on RyR2 (95, 96). A certain 

strain of pig has a higher incidence of RyR 

mutations that predispose them to malignant 

hyperthermia (99). A knockin mouse model of 

malignant hyperthermia has also been 

established (24). .  

 

3.4 Ligand binding 

Ryanodine binding studies are useful to examine 

(1) the presence of RyRs and (2) the density of 

RyRs in cells or tissues of interest and (3) to 

indirectly determine RyR open state. A detailed 

methods protocol for performing tritiated 

ryanodine binding is provided by Meissner and 

colleagues (21) 

 

3.4 Activators and inhibitors 

A list of RyR activators and inhibitors are in Table 

1.  

 

 

 

3.5 Pull-down 

Pull-down of RyR is achieved with high affinity 

using a FKBP12 or FKBP12.6 GST fusion protein 

(51, 61). 
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Table 1. RyR activators and inhibitors. 

 

Table 2. RyR antibodies. 

 

 

 
 
 

 

 

 

RyR Activators Concentratio

n 

References Comments 

Caffeine 2 mM (15, 46, 109) Also inhibits IP3Rs, phospholipase C, 
and phosphodiesterase (14).  

Cyclic ADP ribose (cADPR) 100 uM (76, 77, 124) Can increase SERCA activity, 
leading to increased ER/SR Ca

2+
 

content, and could thereby increase 
Ca

2+
 release (12, 115). 

Cyclic inosine diphosphoribose ether 

(cIDPRE) 

200 uM (38, 117) Synthetic, membrane permeant 
analogue of cADPR (38, 117). 

4-chloro-m-cresol (4-CMC) 1 mM (42, 43) RyR1-specific agonist (10, 42, 43) . 

Ryanodine 10 nM (9, 46) Nanomolar concentrations lock the 
RyR in an open subconductance 
state (85). 

RyR Inhibitors Concentratio

n 

References Comments 

Ryanodine 100 uM (45, 74, 105) Micromolar concentrations inhibit the 
channel (85). 

Dantrolene 100 uM (45, 46, 52, 78, 

81) 

The only drug targeting RyRs to be 
used clinically (113, 128). Has poor 
water solubility. 

Azumolene 100 uM (121, 123) Structurally similar, equipotent 
analog of dantrolene, with a ~30-fold 
greater water-solubility (2, 60). Also 
known as EU 4093. 

Antibody Vendor (cat #) Host 
Species 

Application Target isoform References 

34C Iowa 
Hybridoma 

(34C) 

Mouse WB, IHC, IF, IP RyR 1-3 (70, 94) 

C3-33 Abcam   
(ab2827) 

Mouse WB, IHC, IF, IP, Flow Cyt, ICC, ELISA RyR2 (18, 59, 101) 

H-300 Santa Cruz      
(sc-13942) 

Rabbit WB, IHC, IF, IP, siRNA RyR1-3 (119) 

XA7B6 Santa Cruz    
(sc-73607) 

Mouse WB, IP RyR1 (27) 

WB, western blotting; IHC, immunohistochemistry; IF, immunofluorescence; IP, immunoprecipitation; Flow Cyt, flow 

cytometry; ICC immunocytochemistry; ELISA, enzyme-linked immunosorbent assay. 
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